Tìm `y` biết: `1/4+1/28+1/70+1/130+…+1/(y(y+3))=34/103` `1/3+1/6+1/10+1/15+…+1/((y(y+1))/2)=2009/2011` 18/08/2021 Bởi Harper Tìm `y` biết: `1/4+1/28+1/70+1/130+…+1/(y(y+3))=34/103` `1/3+1/6+1/10+1/15+…+1/((y(y+1))/2)=2009/2011`
a)1/4+1/28+1/70+1/130+…+1/y(y+3)=34/103 ⇔1/1*4+1/4*7+1/7*10+1/10*13+….+1/y*(y+3)=34/103 ⇔3(1/1*4+1/4*7+1/7*10+1/10*13+….+1/y*(y+3)=102/103 ⇔3/1*4+3/4*7+3/7*10+….+3/y(y+3)=102/103 ⇔1-1/4+1/4-1/7+1/7+1/10+…+1/y-1/y+3=102/103 ⇔1-1/y+3=102/103 ⇔1/y+3=1-102/103=1/103 ⇔y+3=103 ⇔y=100 b)1/3+1/6+1/10+1/15+…+1/y(y+1)/2=2009/2011 ⇔1/2(1/3+1/6+1/10+1/15+…+1/y(y+1)/2)=2009/2011*1/2=2009/4022 ⇔1/2*3+1/3*4+…+1/y(y+1)=2009/4022 ⇔1/2-1/3+1/3+1/4+….+1/y-1/y+1=2009/4022 ⇔1/2-1/y+1=2009/4022 ⇔1/y+1=1/2-2009/4022=2/4022=1/2011 ⇔y+1=2011 ⇔y=2010 Bình luận
Đáp án: $a/$ `1/4 + 1/28 + 1/70 + 1/130 + .. + 1/(y (y + 3) ) = 34/103` `⇔ 1/(1 . 4) + 1/(4 . 7) + 1/(7 . 10) + 1/(10 . 14) + … + 1/(y (y + 3)) = 34/103` `⇔ 1/3 [1 – 1/4 + 1/4 – 1/7 + 1/7 – 1/10 + 1/10 – 1/14 + … + 1/y – 1/(y + 3)] = 34/103` `⇔ 1/3 [1 + ( – 1/4 + 1/4 – 1/7 + 1/7 – 1/10 + 1/10 – 1/14 + … + 1/y) – 1/(y +3)] = 34/103` `⇔ 1/3 [1 – 1/(y + 3)] = 34/103` `⇔ 1- 1/(y + 3) = 102/103` `⇔ 1/(y + 3) = 1/103` `⇔ 103 = y + 3` `⇔ y = 100` `text{Vậy y =100}` $b/$ `1/3 + 1/6 + 1/10 + 1/15 + .. + 1/( (y (y + 1) )/2) = 2009/2011` `⇔ 1/(2 . 3) + 1/(3 . 4) + 1/(4 . 5) + … + 1/(y (y + 1) ) = 2009/4022` `⇔ 1/2 – 1/3 + 1/3 – 1/4 + 1/4 – 1/5 + .. + 1/y – 1/(y + 1) = 2009/4022` `⇔ 1/2 + (- 1/3 + 1/3 – 1/4 + 1/4 – 1/5 + .. + 1/y) – 1/(y + 1) = 2009/4022` `⇔ 1/2 – 1/(y + 1) = 2009/4022` `⇔ 1/(y + 1) = 1/2011` `⇔ y + 1 = 2011` `⇔ y = 2010` `text{Vậy y = 2010}` Bình luận
a)1/4+1/28+1/70+1/130+…+1/y(y+3)=34/103
⇔1/1*4+1/4*7+1/7*10+1/10*13+….+1/y*(y+3)=34/103
⇔3(1/1*4+1/4*7+1/7*10+1/10*13+….+1/y*(y+3)=102/103
⇔3/1*4+3/4*7+3/7*10+….+3/y(y+3)=102/103
⇔1-1/4+1/4-1/7+1/7+1/10+…+1/y-1/y+3=102/103
⇔1-1/y+3=102/103
⇔1/y+3=1-102/103=1/103
⇔y+3=103
⇔y=100
b)1/3+1/6+1/10+1/15+…+1/y(y+1)/2=2009/2011
⇔1/2(1/3+1/6+1/10+1/15+…+1/y(y+1)/2)=2009/2011*1/2=2009/4022
⇔1/2*3+1/3*4+…+1/y(y+1)=2009/4022
⇔1/2-1/3+1/3+1/4+….+1/y-1/y+1=2009/4022
⇔1/2-1/y+1=2009/4022
⇔1/y+1=1/2-2009/4022=2/4022=1/2011
⇔y+1=2011
⇔y=2010
Đáp án:
$a/$ `1/4 + 1/28 + 1/70 + 1/130 + .. + 1/(y (y + 3) ) = 34/103`
`⇔ 1/(1 . 4) + 1/(4 . 7) + 1/(7 . 10) + 1/(10 . 14) + … + 1/(y (y + 3)) = 34/103`
`⇔ 1/3 [1 – 1/4 + 1/4 – 1/7 + 1/7 – 1/10 + 1/10 – 1/14 + … + 1/y – 1/(y + 3)] = 34/103`
`⇔ 1/3 [1 + ( – 1/4 + 1/4 – 1/7 + 1/7 – 1/10 + 1/10 – 1/14 + … + 1/y) – 1/(y +3)] = 34/103`
`⇔ 1/3 [1 – 1/(y + 3)] = 34/103`
`⇔ 1- 1/(y + 3) = 102/103`
`⇔ 1/(y + 3) = 1/103`
`⇔ 103 = y + 3`
`⇔ y = 100`
`text{Vậy y =100}`
$b/$ `1/3 + 1/6 + 1/10 + 1/15 + .. + 1/( (y (y + 1) )/2) = 2009/2011`
`⇔ 1/(2 . 3) + 1/(3 . 4) + 1/(4 . 5) + … + 1/(y (y + 1) ) = 2009/4022`
`⇔ 1/2 – 1/3 + 1/3 – 1/4 + 1/4 – 1/5 + .. + 1/y – 1/(y + 1) = 2009/4022`
`⇔ 1/2 + (- 1/3 + 1/3 – 1/4 + 1/4 – 1/5 + .. + 1/y) – 1/(y + 1) = 2009/4022`
`⇔ 1/2 – 1/(y + 1) = 2009/4022`
`⇔ 1/(y + 1) = 1/2011`
`⇔ y + 1 = 2011`
`⇔ y = 2010`
`text{Vậy y = 2010}`