Vì : $|x-y|$ $≥$ $0$ $∀$ $x;y$ $|y+\dfrac{9}{25}|$ $≥$ $0$ $∀$ $y$ Mà $|x-y| + |y + \dfrac{9}{25}| = 0$ $⇒$ $\left \{ {{x-y=0} \atop {y+\dfrac{9}{25}=0}} \right.$ $⇔$ $\left \{ {{x-y=0} \atop {y=-\dfrac{9}{25}}} \right.$ $⇔$ $\left \{ {{x-(-\dfrac{9}{25})=0} \atop {y=-\dfrac{9}{25}}} \right.$ $⇔$ $\left \{ {{x+\dfrac{9}{25}=0} \atop {y=-\dfrac{9}{25}}} \right.$ $⇔$ $\left \{ {{x=-\dfrac{9}{25}} \atop {y=-\dfrac{9}{25}}} \right.$ Vậy $x=y=\dfrac{-9}{25}$. Bình luận
Do $\left \{ {{|x – y| ≥ 0 } \atop {|y + \frac{9}{25} | ≥ 0}} \right.$ Mà: |x – y| + |y + $\frac{9}{25}$| = 0 ⇒ $\left \{ {{|x – y| = 0 } \atop {|y + \frac{9}{25} | = 0}} \right.$ ⇒ $\left \{ {{x – y = 0 } \atop {y + \frac{9}{25} = 0}} \right.$ ⇒ $\left \{ {{x – \frac{-9}{25} = 0 } \atop {y = \frac{-9}{25} }} \right.$ ⇒ $\left \{ {{x + \frac{9}{25} = 0 } \atop {y = \frac{-9}{25} }} \right.$ ⇒ $\left \{ {{x = \frac{-9}{25} } \atop {y = \frac{-9}{25} }} \right.$ Vậy x = y = $\frac{-9}{25}$ Bình luận
Vì : $|x-y|$ $≥$ $0$ $∀$ $x;y$
$|y+\dfrac{9}{25}|$ $≥$ $0$ $∀$ $y$
Mà $|x-y| + |y + \dfrac{9}{25}| = 0$
$⇒$ $\left \{ {{x-y=0} \atop {y+\dfrac{9}{25}=0}} \right.$
$⇔$ $\left \{ {{x-y=0} \atop {y=-\dfrac{9}{25}}} \right.$
$⇔$ $\left \{ {{x-(-\dfrac{9}{25})=0} \atop {y=-\dfrac{9}{25}}} \right.$
$⇔$ $\left \{ {{x+\dfrac{9}{25}=0} \atop {y=-\dfrac{9}{25}}} \right.$
$⇔$ $\left \{ {{x=-\dfrac{9}{25}} \atop {y=-\dfrac{9}{25}}} \right.$
Vậy $x=y=\dfrac{-9}{25}$.
Do $\left \{ {{|x – y| ≥ 0 } \atop {|y + \frac{9}{25} | ≥ 0}} \right.$
Mà: |x – y| + |y + $\frac{9}{25}$| = 0
⇒ $\left \{ {{|x – y| = 0 } \atop {|y + \frac{9}{25} | = 0}} \right.$
⇒ $\left \{ {{x – y = 0 } \atop {y + \frac{9}{25} = 0}} \right.$
⇒ $\left \{ {{x – \frac{-9}{25} = 0 } \atop {y = \frac{-9}{25} }} \right.$
⇒ $\left \{ {{x + \frac{9}{25} = 0 } \atop {y = \frac{-9}{25} }} \right.$
⇒ $\left \{ {{x = \frac{-9}{25} } \atop {y = \frac{-9}{25} }} \right.$
Vậy x = y = $\frac{-9}{25}$