tìm x,y thỏa mãn x^2+2x^2y+2y^2-(x^2y^2+2x^2)-2=0 28/09/2021 Bởi Piper tìm x,y thỏa mãn x^2+2x^2y+2y^2-(x^2y^2+2x^2)-2=0
Ta có: x2+2x2y2+2y2−(x2y2+2x2)−2=0x2+2x2y2+2y2−(x2y2+2×2)−2=0 ⇔x2y2−x2+2y2−2=0⇔x2y2−x2+2y2−2=0 ⇔x2(y2−1)+2(y2−1)=0⇔x2(y2−1)+2(y2−1)=0 ⇔(y2−1)(x2+2)=0⇔(y2−1)(x2+2)=0 Dễ thấy: x2≥0∀x⇔x2+2≥2>0x2≥0∀x⇔x2+2≥2>0 (Vô nghiệm) ⇔x⇔x tùy ý ⇔y2−1=0⇔⇔y2−1=0⇔ [y=1x=−1[y=1x=−1 Vậy x tùy ý và y=1 hoặc y=−1 #HOCTOTNHA<3 Bình luận
Ta có:
x2+2x2y2+2y2−(x2y2+2x2)−2=0x2+2x2y2+2y2−(x2y2+2×2)−2=0
⇔x2y2−x2+2y2−2=0⇔x2y2−x2+2y2−2=0
⇔x2(y2−1)+2(y2−1)=0⇔x2(y2−1)+2(y2−1)=0
⇔(y2−1)(x2+2)=0⇔(y2−1)(x2+2)=0
Dễ thấy: x2≥0∀x⇔x2+2≥2>0x2≥0∀x⇔x2+2≥2>0 (Vô nghiệm)
⇔x⇔x tùy ý
⇔y2−1=0⇔⇔y2−1=0⇔ [y=1x=−1[y=1x=−1
Vậy x tùy ý và y=1 hoặc y=−1
#HOCTOTNHA<3