Tìm x,y thuộc z: a,xy-y+x=20 b,xy+x-3y=30 c,2x+1 chia hết x+2 d,x^2 chia hết x+3 11/11/2021 Bởi Harper Tìm x,y thuộc z: a,xy-y+x=20 b,xy+x-3y=30 c,2x+1 chia hết x+2 d,x^2 chia hết x+3
Đáp án: Giải thích các bước giải: $xy-y+x=20$ $⇒y.(x-1)+x-1=20-1$ $⇒y.(x-1)+(x-1)=19$ $⇒(y+1).(x-1)=19=19.1=1.19=(-1).(-19)=(-19).(-1)$ $TH1:(y+1).(x-1)=19.1$ $⇒y=18;x=2$ $TH2:(y+1).(x-1)=1.19$ $⇒y=0;x=20$ $TH3:(y+1).(x-1)=(-19).(-1)$ $⇒y=-20;x=0$ $TH4:(y+1).(x-1)=(-1).(-19)$ $⇒y=-2;x=-18$ Vậy… $ $ $xy+x-3y=30$ $⇒x.(y+1)-3y-3=30-3$ $⇒x.(y+1)-3.(y+1)=27$ $⇒(x-3).(y+1)=27=27.1=1.27=(-1).(-27)=(-27).(-1)=9.3=3.9=(-3).(-9)=(-9).(-3)$ $TH1:(x-3).(y+1)=27.1$ $⇒x=30;y=0$ $TH2:(x-3).(y+1)=1.27$ $⇒x=4;y=26$ $TH3:(x-3).(y+1)=(-1).(-27)$ $⇒x=2;y=-28$ $TH4:(x-3).(y+1)=(-27).(-1)$ $⇒x=-24;y=-2$ $TH5:(x-3).(y+1)=9.3$ $⇒x=12;y=2$ $TH6:(x-3).(y+1)=3.9$ $⇒x=6;y=8$ $TH7:(x-3).(y+1)=(-3).(-9)$ $⇒x=0;y=-10$ $TH8:(x-3).(y+1)=(-9).(-3)$ $⇒x=-6;y=-4$ Vậy… $ $ $2x+1$ $\vdots$ $x+2$ $⇒2x+4-4+1$ $\vdots$ $x+2$ $⇒2.(x+2)-3$ $\vdots$ $x+2$ $⇒3$ $\vdots$ $x+2$ $⇒x+2∈${$3;1;-1;-3$} $⇒x∈${$1;-1;-3;-5$} $ $ $x^{2}$ $\vdots$ $x+3$ $⇒x^{2}+3x-3x$ $\vdots$ $x+3$ $⇒x.(x+3)-3x$ $\vdots$ $x+3$ $⇒-3x$ $\vdots$ $x+3$ $⇒-3x-9+9$ $\vdots$ $x+3$ $⇒-3.(x+3)+9$ $\vdots$ $x+3$ $⇒9$ $\vdots$ $x+3$ $⇒x+3∈${$9;3;1;-1;-3;-9$} $⇒x∈${$6;0;-2;-4;-6;-12$} Bình luận
a, $xy-y+x=20$ $⇔y(x-1)+(x-1)=19$ $⇔(x-1)(y+1)=19$ Ta có bảng tương ứng: x-1 1 -1 19 -19 y+1 19 -19 1 -1 x 2 0 20 -18 y 18 -20 0 -2 Vậy $(x,y)∈\{(2;18);(0;-20);(20;0);(-18;-2)\}$ b, $xy+x-3y=30$ $⇔x(y+1)-3(y+1)=27$ $⇔(y+1)(x-3)=27$ Ta có bảng tương ứng: y+1 1 -1 3 -3 9 -9 27 -27 x-3 27 -27 9 -9 3 -3 1 -1 y 0 -2 2 -4 8 -10 26 -28 x 30 -24 12 -6 6 0 4 2 Vaayh (y,x)∈{(0;30);(-2;-24);(2;12);(-4;-6);(8;6);(-10;0);(26;4);(-28;2)} c, Ta có: 2x+1$\vdits$x+2 ⇒2(x+2)-3$\vdots$x+2 ⇒x+2∈Ư(3)={±1;±3} Ta có bảng tương ứng: x+3 1 -1 3 -3 x -2 -4 0 -6 Vậy x∈{-2;-4;0;-6} d, Ta có: x²$\vdots$x+3 ⇒x(x+3)-3x$\vdots$x+3 ⇒3x$\vdots$x+3 ⇒3(x+3)-9$\vdost$x+3 ⇒x+3∈Ư(9)={±1;±3;±9} Ta có bảng tương ứng: x+3 1 -1 3 -3 9 -9 x -2 -4 0 -6 6 -12 Vaayu x∈{-2;-4;0;-6;6;-12} Bình luận
Đáp án:
Giải thích các bước giải:
$xy-y+x=20$
$⇒y.(x-1)+x-1=20-1$
$⇒y.(x-1)+(x-1)=19$
$⇒(y+1).(x-1)=19=19.1=1.19=(-1).(-19)=(-19).(-1)$
$TH1:(y+1).(x-1)=19.1$
$⇒y=18;x=2$
$TH2:(y+1).(x-1)=1.19$
$⇒y=0;x=20$
$TH3:(y+1).(x-1)=(-19).(-1)$
$⇒y=-20;x=0$
$TH4:(y+1).(x-1)=(-1).(-19)$
$⇒y=-2;x=-18$
Vậy…
$ $
$xy+x-3y=30$
$⇒x.(y+1)-3y-3=30-3$
$⇒x.(y+1)-3.(y+1)=27$
$⇒(x-3).(y+1)=27=27.1=1.27=(-1).(-27)=(-27).(-1)=9.3=3.9=(-3).(-9)=(-9).(-3)$
$TH1:(x-3).(y+1)=27.1$
$⇒x=30;y=0$
$TH2:(x-3).(y+1)=1.27$
$⇒x=4;y=26$
$TH3:(x-3).(y+1)=(-1).(-27)$
$⇒x=2;y=-28$
$TH4:(x-3).(y+1)=(-27).(-1)$
$⇒x=-24;y=-2$
$TH5:(x-3).(y+1)=9.3$
$⇒x=12;y=2$
$TH6:(x-3).(y+1)=3.9$
$⇒x=6;y=8$
$TH7:(x-3).(y+1)=(-3).(-9)$
$⇒x=0;y=-10$
$TH8:(x-3).(y+1)=(-9).(-3)$
$⇒x=-6;y=-4$
Vậy…
$ $
$2x+1$ $\vdots$ $x+2$
$⇒2x+4-4+1$ $\vdots$ $x+2$
$⇒2.(x+2)-3$ $\vdots$ $x+2$
$⇒3$ $\vdots$ $x+2$
$⇒x+2∈${$3;1;-1;-3$}
$⇒x∈${$1;-1;-3;-5$}
$ $
$x^{2}$ $\vdots$ $x+3$
$⇒x^{2}+3x-3x$ $\vdots$ $x+3$
$⇒x.(x+3)-3x$ $\vdots$ $x+3$
$⇒-3x$ $\vdots$ $x+3$
$⇒-3x-9+9$ $\vdots$ $x+3$
$⇒-3.(x+3)+9$ $\vdots$ $x+3$
$⇒9$ $\vdots$ $x+3$
$⇒x+3∈${$9;3;1;-1;-3;-9$}
$⇒x∈${$6;0;-2;-4;-6;-12$}
a, $xy-y+x=20$
$⇔y(x-1)+(x-1)=19$
$⇔(x-1)(y+1)=19$
Ta có bảng tương ứng:
x-1 1 -1 19 -19
y+1 19 -19 1 -1
x 2 0 20 -18
y 18 -20 0 -2
Vậy $(x,y)∈\{(2;18);(0;-20);(20;0);(-18;-2)\}$
b, $xy+x-3y=30$
$⇔x(y+1)-3(y+1)=27$
$⇔(y+1)(x-3)=27$
Ta có bảng tương ứng:
y+1 1 -1 3 -3 9 -9 27 -27
x-3 27 -27 9 -9 3 -3 1 -1
y 0 -2 2 -4 8 -10 26 -28
x 30 -24 12 -6 6 0 4 2
Vaayh (y,x)∈{(0;30);(-2;-24);(2;12);(-4;-6);(8;6);(-10;0);(26;4);(-28;2)}
c, Ta có: 2x+1$\vdits$x+2
⇒2(x+2)-3$\vdots$x+2
⇒x+2∈Ư(3)={±1;±3}
Ta có bảng tương ứng:
x+3 1 -1 3 -3
x -2 -4 0 -6
Vậy x∈{-2;-4;0;-6}
d, Ta có: x²$\vdots$x+3
⇒x(x+3)-3x$\vdots$x+3
⇒3x$\vdots$x+3
⇒3(x+3)-9$\vdost$x+3
⇒x+3∈Ư(9)={±1;±3;±9}
Ta có bảng tương ứng:
x+3 1 -1 3 -3 9 -9
x -2 -4 0 -6 6 -12
Vaayu x∈{-2;-4;0;-6;6;-12}