Tìm x,y,z: a,(2x+5)^4=81 b,(3x-1)^3=-1 c,(x-y)^2+(y+3)^2=0 d,(x-2y)^2+(x-2)^4+(z-1)^6=0 24/07/2021 Bởi Parker Tìm x,y,z: a,(2x+5)^4=81 b,(3x-1)^3=-1 c,(x-y)^2+(y+3)^2=0 d,(x-2y)^2+(x-2)^4+(z-1)^6=0
Đáp án: $\begin{array}{l}a){\left( {2x + 5} \right)^4} = 81\\ \Rightarrow {\left( {2x + 5} \right)^4} = {3^4} = {\left( { – 3} \right)^4}\\ \Rightarrow \left[ \begin{array}{l}2x + 5 = 3\\2x + 5 = – 3\end{array} \right. \Rightarrow \left[ \begin{array}{l}2x = 3 – 5 = – 2\\2x = – 3 – 5 = – 8\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = – 1\\x = – 4\end{array} \right.\\b){\left( {3x – 1} \right)^3} = – 1\\ \Rightarrow 3x – 1 = – 1\\ \Rightarrow 3x = – 1 + 1 = 0\\ \Rightarrow x = 0\\c)\\{\left( {x – y} \right)^2} + {\left( {y + 3} \right)^2} = 0\\Do:\left\{ \begin{array}{l}{\left( {x – y} \right)^2} \ge 0\\{\left( {y + 3} \right)^2} \ge 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}{\left( {x – y} \right)^2} = 0\\{\left( {y + 3} \right)^2} = 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x – y = 0\\y + 3 = 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x = y\\y = – 3\end{array} \right.\\ \Rightarrow x = y = – 3\\d)\\{\left( {x – 2y} \right)^2} + {\left( {x – 2} \right)^4} + {\left( {z – 1} \right)^6} = 0\\ \Rightarrow \left\{ \begin{array}{l}{\left( {x – 2y} \right)^2} = 0\\{\left( {x – 2} \right)^4} = 0\\{\left( {z – 1} \right)^6} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 2y\\x = 2\\z = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 2\\y = 1\\z = 1\end{array} \right.\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a){\left( {2x + 5} \right)^4} = 81\\
\Rightarrow {\left( {2x + 5} \right)^4} = {3^4} = {\left( { – 3} \right)^4}\\
\Rightarrow \left[ \begin{array}{l}
2x + 5 = 3\\
2x + 5 = – 3
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
2x = 3 – 5 = – 2\\
2x = – 3 – 5 = – 8
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = – 1\\
x = – 4
\end{array} \right.\\
b){\left( {3x – 1} \right)^3} = – 1\\
\Rightarrow 3x – 1 = – 1\\
\Rightarrow 3x = – 1 + 1 = 0\\
\Rightarrow x = 0\\
c)\\
{\left( {x – y} \right)^2} + {\left( {y + 3} \right)^2} = 0\\
Do:\left\{ \begin{array}{l}
{\left( {x – y} \right)^2} \ge 0\\
{\left( {y + 3} \right)^2} \ge 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{\left( {x – y} \right)^2} = 0\\
{\left( {y + 3} \right)^2} = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x – y = 0\\
y + 3 = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = y\\
y = – 3
\end{array} \right.\\
\Rightarrow x = y = – 3\\
d)\\
{\left( {x – 2y} \right)^2} + {\left( {x – 2} \right)^4} + {\left( {z – 1} \right)^6} = 0\\
\Rightarrow \left\{ \begin{array}{l}
{\left( {x – 2y} \right)^2} = 0\\
{\left( {x – 2} \right)^4} = 0\\
{\left( {z – 1} \right)^6} = 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x = 2y\\
x = 2\\
z = 1
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x = 2\\
y = 1\\
z = 1
\end{array} \right.
\end{array}$