Tìm x,y,z biết 2/3x=3/4y;1/5x=3/7z và 3x +4y-9z=254 Giúp em vs ạ Em đang cần gấp!!! Xin chân thành cảm ơn ạ!!! 02/07/2021 Bởi Aaliyah Tìm x,y,z biết 2/3x=3/4y;1/5x=3/7z và 3x +4y-9z=254 Giúp em vs ạ Em đang cần gấp!!! Xin chân thành cảm ơn ạ!!!
Đáp án: $\left( {x;y;z} \right) = \left( {\dfrac{{5715}}{{53}};\dfrac{{5080}}{{53}};\dfrac{{2667}}{{53}}} \right)$ Giải thích các bước giải: Ta có: $\begin{array}{l}\dfrac{2}{3}x = \dfrac{3}{4}y \Rightarrow \dfrac{2}{9}x = \dfrac{1}{4}y \Rightarrow \dfrac{x}{9} = \dfrac{y}{8} \Rightarrow \dfrac{x}{{45}} = \dfrac{y}{{40}}\\\dfrac{1}{5}x = \dfrac{3}{7}z \Rightarrow \dfrac{1}{{15}}x = \dfrac{1}{7}z \Rightarrow \dfrac{x}{{15}} = \dfrac{z}{7} \Rightarrow \dfrac{x}{{45}} = \dfrac{z}{{21}}\\ \Rightarrow \dfrac{x}{{45}} = \dfrac{y}{{40}} = \dfrac{z}{{21}}\\ \Rightarrow \dfrac{x}{{45}} = \dfrac{y}{{40}} = \dfrac{z}{{21}} = \dfrac{{3x + 4y – 9z}}{{3.45 + 4.40 – 9.21}} = \dfrac{{254}}{{106}} = \dfrac{{127}}{{53}}\\ \Rightarrow \left\{ \begin{array}{l}\dfrac{x}{{45}} = \dfrac{{127}}{{53}}\\\dfrac{y}{{40}} = \dfrac{{127}}{{53}}\\\dfrac{z}{{21}} = \dfrac{{127}}{{53}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = \dfrac{{5715}}{{53}}\\y = \dfrac{{5080}}{{53}}\\z = \dfrac{{2667}}{{53}}\end{array} \right.\\ \Rightarrow \left( {x;y;z} \right) = \left( {\dfrac{{5715}}{{53}};\dfrac{{5080}}{{53}};\dfrac{{2667}}{{53}}} \right)\end{array}$ Vậy $\left( {x;y;z} \right) = \left( {\dfrac{{5715}}{{53}};\dfrac{{5080}}{{53}};\dfrac{{2667}}{{53}}} \right)$ Bình luận
`+) 2/3 x=3/4 y` `=> 2/9 x=1/4 y` `=> x/9=y/8` `=> x/45=y/40` `+) 1/5 x=3/7 z` `=> 1/5 x =1/7z` `=> x/15=z/7` `=> x/45=z/21` `=> x/45=y/40=z/21 =(2x+4y-9z)/(3.45+4.40-9.21)` `=254/105` `=127/53 ` `+) x/45=127/53` `=> x=5715/53` `+) y/40=127/54` `=> y=5080/53` `+) z/21=127/53` `=> z=2667/53` Bình luận
Đáp án:
$\left( {x;y;z} \right) = \left( {\dfrac{{5715}}{{53}};\dfrac{{5080}}{{53}};\dfrac{{2667}}{{53}}} \right)$
Giải thích các bước giải:
Ta có:
$\begin{array}{l}
\dfrac{2}{3}x = \dfrac{3}{4}y \Rightarrow \dfrac{2}{9}x = \dfrac{1}{4}y \Rightarrow \dfrac{x}{9} = \dfrac{y}{8} \Rightarrow \dfrac{x}{{45}} = \dfrac{y}{{40}}\\
\dfrac{1}{5}x = \dfrac{3}{7}z \Rightarrow \dfrac{1}{{15}}x = \dfrac{1}{7}z \Rightarrow \dfrac{x}{{15}} = \dfrac{z}{7} \Rightarrow \dfrac{x}{{45}} = \dfrac{z}{{21}}\\
\Rightarrow \dfrac{x}{{45}} = \dfrac{y}{{40}} = \dfrac{z}{{21}}\\
\Rightarrow \dfrac{x}{{45}} = \dfrac{y}{{40}} = \dfrac{z}{{21}} = \dfrac{{3x + 4y – 9z}}{{3.45 + 4.40 – 9.21}} = \dfrac{{254}}{{106}} = \dfrac{{127}}{{53}}\\
\Rightarrow \left\{ \begin{array}{l}
\dfrac{x}{{45}} = \dfrac{{127}}{{53}}\\
\dfrac{y}{{40}} = \dfrac{{127}}{{53}}\\
\dfrac{z}{{21}} = \dfrac{{127}}{{53}}
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x = \dfrac{{5715}}{{53}}\\
y = \dfrac{{5080}}{{53}}\\
z = \dfrac{{2667}}{{53}}
\end{array} \right.\\
\Rightarrow \left( {x;y;z} \right) = \left( {\dfrac{{5715}}{{53}};\dfrac{{5080}}{{53}};\dfrac{{2667}}{{53}}} \right)
\end{array}$
Vậy $\left( {x;y;z} \right) = \left( {\dfrac{{5715}}{{53}};\dfrac{{5080}}{{53}};\dfrac{{2667}}{{53}}} \right)$
`+) 2/3 x=3/4 y`
`=> 2/9 x=1/4 y`
`=> x/9=y/8`
`=> x/45=y/40`
`+) 1/5 x=3/7 z`
`=> 1/5 x =1/7z`
`=> x/15=z/7`
`=> x/45=z/21`
`=> x/45=y/40=z/21 =(2x+4y-9z)/(3.45+4.40-9.21)`
`=254/105`
`=127/53 `
`+) x/45=127/53`
`=> x=5715/53`
`+) y/40=127/54`
`=> y=5080/53`
`+) z/21=127/53`
`=> z=2667/53`