Tìm x,y,z biết a, $\frac{6}{11}$ .x=$\frac{9}{2}$ .y=$\frac{11}{5}$ .z và x+y+z=240 b, $\frac{x-y}{3}$= $\frac{x+y}{15}$= $\frac{x.y}{200}$

Tìm x,y,z biết
a, $\frac{6}{11}$ .x=$\frac{9}{2}$ .y=$\frac{11}{5}$ .z và x+y+z=240
b, $\frac{x-y}{3}$= $\frac{x+y}{15}$= $\frac{x.y}{200}$

0 bình luận về “Tìm x,y,z biết a, $\frac{6}{11}$ .x=$\frac{9}{2}$ .y=$\frac{11}{5}$ .z và x+y+z=240 b, $\frac{x-y}{3}$= $\frac{x+y}{15}$= $\frac{x.y}{200}$”

  1. Đáp án:

    $a)\left( {x;y;z} \right) = \left( {\dfrac{{87120}}{{497}};\dfrac{{10560}}{{497}};\dfrac{{21600}}{{497}}} \right)$

    $b)\left( {x;y} \right) \in \left\{ {\left( {0;0} \right),\left( {\dfrac{{100}}{3};\dfrac{{200}}{9}} \right)} \right\}$

    Giải thích các bước giải:

     a) Ta có:

    $\begin{array}{l}
    \dfrac{6}{{11}}x = \dfrac{9}{2}y = \dfrac{{11}}{5}z\\
     \Rightarrow \dfrac{x}{{\dfrac{{11}}{6}}} = \dfrac{y}{{\dfrac{2}{9}}} = \dfrac{z}{{\dfrac{5}{{11}}}}\\
     \Rightarrow \dfrac{x}{{\dfrac{{11}}{6}}} = \dfrac{y}{{\dfrac{2}{9}}} = \dfrac{z}{{\dfrac{5}{{11}}}} = \dfrac{{x + y + z}}{{\dfrac{{11}}{6} + \dfrac{2}{9} + \dfrac{5}{{11}}}} = \dfrac{{240}}{{\dfrac{{497}}{{198}}}} = \dfrac{{47520}}{{497}}\\
     \Rightarrow \left\{ \begin{array}{l}
    x = \dfrac{{11}}{6}.\dfrac{{47520}}{{497}} = \dfrac{{87120}}{{497}}\\
    y = \dfrac{2}{9}.\dfrac{{47520}}{{497}} = \dfrac{{10560}}{{497}}\\
    z = \dfrac{5}{{11}}.\dfrac{{47520}}{{497}} = \dfrac{{21600}}{{497}}
    \end{array} \right.
    \end{array}$

    $ \Rightarrow \left( {x;y;z} \right) = \left( {\dfrac{{87120}}{{497}};\dfrac{{10560}}{{497}};\dfrac{{21600}}{{497}}} \right)$

    Vậy $\left( {x;y;z} \right) = \left( {\dfrac{{87120}}{{497}};\dfrac{{10560}}{{497}};\dfrac{{21600}}{{497}}} \right)$

    b) Ta có:

    $\dfrac{{x – y}}{3} = \dfrac{{x + y}}{{15}} = \dfrac{{xy}}{{200}}\left( 1 \right)$

    Lại có:

    $\begin{array}{l}
    \left( 1 \right) \Rightarrow \dfrac{{x – y}}{3} = \dfrac{{x + y}}{{15}} = \dfrac{{x – y + x + y}}{{3 + 15}} = \dfrac{{2x}}{{18}} = \dfrac{x}{9}\\
    \left( 1 \right) \Rightarrow \dfrac{{x – y}}{3} = \dfrac{{x + y}}{{15}} = \dfrac{{x + y – \left( {x – y} \right)}}{{15 – 3}} = \dfrac{{2y}}{{12}} = \dfrac{y}{6}
    \end{array}$

    Như vậy: $\left( 1 \right) \Rightarrow \dfrac{x}{9} = \dfrac{y}{6} = \dfrac{{xy}}{{200}}\left( 2 \right)$

    Khi đó:

    $\begin{array}{l}
     \Rightarrow \dfrac{x}{9} = \dfrac{{xy}}{{200}}\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 0\\
    \dfrac{y}{{200}} = \dfrac{1}{9}
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 0\\
    y = \dfrac{{200}}{9}
    \end{array} \right.
    \end{array}$

    $\begin{array}{l}
     + )TH1:x = 0\\
    \left( 2 \right) \Rightarrow y = \dfrac{x}{9}.6 = 0\\
     \Rightarrow \left( {x;y} \right) = \left( {0;0} \right)
    \end{array}$

    $\begin{array}{l}
     + )TH2:y = \dfrac{{200}}{9}\\
    \left( 2 \right) \Rightarrow x = 9.\dfrac{y}{6} = \dfrac{3}{2}.\dfrac{{200}}{9} = \dfrac{{100}}{3}\\
     \Rightarrow \left( {x;y} \right) = \left( {\dfrac{{100}}{3};\dfrac{{200}}{9}} \right)
    \end{array}$

    Vậy $\left( {x;y} \right) \in \left\{ {\left( {0;0} \right),\left( {\dfrac{{100}}{3};\dfrac{{200}}{9}} \right)} \right\}$

    Bình luận

Viết một bình luận