Timf x a)x^2+3x=0 b)x^3-4x=0 c)x^2+5x=6

Timf x
a)x^2+3x=0
b)x^3-4x=0
c)x^2+5x=6

0 bình luận về “Timf x a)x^2+3x=0 b)x^3-4x=0 c)x^2+5x=6”

  1. a) $x^{2}$+3x=0

    ⇔ x(x + 3) = 0

    ⇔ \(\left[ \begin{array}{l}x=0\\x+3=0\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.\)

    b) $x^{3}$ – 4x = 0

    ⇔ x($x^{2}$ – 4) = 0

    ⇔ \(\left[ \begin{array}{l}x=0\\x^{2}-4=0\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}x=0\\x^2=4\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}x=0\\x=±2\end{array} \right.\)

    c) $x^{2}$+5x=6

    ⇔ $x^{2}$ + 5x – 6 = 0

    ⇔ $x^{2}$ – x + 6x – 6 = 0 

    ⇔ x(x – 1) + 6(x – 1) = 0

    ⇔ (x – 1)(x + 6) = 0

    ⇔ \(\left[ \begin{array}{l}x-1=0\\x+6=0\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}x=1\\x=-6\end{array} \right.\)

     

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

     a) `x^2+3x=0`

    `⇔ x(x+3)=0`

    `⇔` \(\left[ \begin{array}{l}x=0\\x+3=0\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.\)

    Vậy `S={0;-3}`

    b) `x^3-4x=0`

    `⇔ x(x^2-4)=0`

    `⇔` \(\left[ \begin{array}{l}x=0\\x^2-4=0\end{array} \right.\)

    `⇔` \(\left[ \begin{array}{l}x=0\\x=±2\end{array} \right.\)  

    Vậy `S={0;-2;2}`

    c) `x^2+5x=6`

    `⇔ x^2+5x-6=0`

    `⇔ (x-1)(x+6)=0`

    `⇔ \(\left[ \begin{array}{l}x-1=0\\x+6=0\end{array} \right.\)

    `⇔` \(\left[ \begin{array}{l}x=1\\x=-6\end{array} \right.\)  

    Vậy `S={1;-6}`

    Bình luận

Viết một bình luận