a) $x^{2}$+3x=0 ⇔ x(x + 3) = 0 ⇔ \(\left[ \begin{array}{l}x=0\\x+3=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.\) b) $x^{3}$ – 4x = 0 ⇔ x($x^{2}$ – 4) = 0 ⇔ \(\left[ \begin{array}{l}x=0\\x^{2}-4=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=0\\x^2=4\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=0\\x=±2\end{array} \right.\) c) $x^{2}$+5x=6 ⇔ $x^{2}$ + 5x – 6 = 0 ⇔ $x^{2}$ – x + 6x – 6 = 0 ⇔ x(x – 1) + 6(x – 1) = 0 ⇔ (x – 1)(x + 6) = 0 ⇔ \(\left[ \begin{array}{l}x-1=0\\x+6=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=1\\x=-6\end{array} \right.\) Bình luận
Đáp án: Giải thích các bước giải: a) `x^2+3x=0` `⇔ x(x+3)=0` `⇔` \(\left[ \begin{array}{l}x=0\\x+3=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.\) Vậy `S={0;-3}` b) `x^3-4x=0` `⇔ x(x^2-4)=0` `⇔` \(\left[ \begin{array}{l}x=0\\x^2-4=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=0\\x=±2\end{array} \right.\) Vậy `S={0;-2;2}` c) `x^2+5x=6` `⇔ x^2+5x-6=0` `⇔ (x-1)(x+6)=0` `⇔ \(\left[ \begin{array}{l}x-1=0\\x+6=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=1\\x=-6\end{array} \right.\) Vậy `S={1;-6}` Bình luận
a) $x^{2}$+3x=0
⇔ x(x + 3) = 0
⇔ \(\left[ \begin{array}{l}x=0\\x+3=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.\)
b) $x^{3}$ – 4x = 0
⇔ x($x^{2}$ – 4) = 0
⇔ \(\left[ \begin{array}{l}x=0\\x^{2}-4=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=0\\x^2=4\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=0\\x=±2\end{array} \right.\)
c) $x^{2}$+5x=6
⇔ $x^{2}$ + 5x – 6 = 0
⇔ $x^{2}$ – x + 6x – 6 = 0
⇔ x(x – 1) + 6(x – 1) = 0
⇔ (x – 1)(x + 6) = 0
⇔ \(\left[ \begin{array}{l}x-1=0\\x+6=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=1\\x=-6\end{array} \right.\)
Đáp án:
Giải thích các bước giải:
a) `x^2+3x=0`
`⇔ x(x+3)=0`
`⇔` \(\left[ \begin{array}{l}x=0\\x+3=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.\)
Vậy `S={0;-3}`
b) `x^3-4x=0`
`⇔ x(x^2-4)=0`
`⇔` \(\left[ \begin{array}{l}x=0\\x^2-4=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=0\\x=±2\end{array} \right.\)
Vậy `S={0;-2;2}`
c) `x^2+5x=6`
`⇔ x^2+5x-6=0`
`⇔ (x-1)(x+6)=0`
`⇔ \(\left[ \begin{array}{l}x-1=0\\x+6=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=1\\x=-6\end{array} \right.\)
Vậy `S={1;-6}`