Tính: 1/1+2+3 + 1/1+2+3+4 + 1/1+2+3+4+5 +……+ 1/1+2+3+……+2016 05/08/2021 Bởi Maria Tính: 1/1+2+3 + 1/1+2+3+4 + 1/1+2+3+4+5 +……+ 1/1+2+3+……+2016
Giải thích các bước giải: $\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+…..+\dfrac{1}{1+2+3+….+2016}$ $=\dfrac{1}{\dfrac{3.(3+1)}{2}}+\dfrac{1}{\dfrac{4.(4+1)}{2}}+…..+\dfrac{1}{\dfrac{2016(2016+1)}{2}}$ $=\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}+…..+\dfrac{2}{2016.2017}$ $=2(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+…..+\dfrac{1}{2016.2017})$ $=2(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+……+\dfrac{1}{2016}-\dfrac{1}{2017})$ $=2(\dfrac{1}{3}-\dfrac{1}{2017})$ $=2.\dfrac{2014}{6051}$ $=\dfrac{4028}{6051}$ Chúc bạn học tốt !!! Bình luận
Giải thích các bước giải:
$\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+…..+\dfrac{1}{1+2+3+….+2016}$
$=\dfrac{1}{\dfrac{3.(3+1)}{2}}+\dfrac{1}{\dfrac{4.(4+1)}{2}}+…..+\dfrac{1}{\dfrac{2016(2016+1)}{2}}$
$=\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}+…..+\dfrac{2}{2016.2017}$
$=2(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+…..+\dfrac{1}{2016.2017})$
$=2(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+……+\dfrac{1}{2016}-\dfrac{1}{2017})$
$=2(\dfrac{1}{3}-\dfrac{1}{2017})$
$=2.\dfrac{2014}{6051}$
$=\dfrac{4028}{6051}$
Chúc bạn học tốt !!!