Tính `1/3-2/3^2+3/3^3+4/3^4+…+99/3^99-100/3^100`.

Tính `1/3-2/3^2+3/3^3+4/3^4+…+99/3^99-100/3^100`.

0 bình luận về “Tính `1/3-2/3^2+3/3^3+4/3^4+…+99/3^99-100/3^100`.”

  1. Đặt `A=1/3-2/3^2+3/3^3-4/3^4+…+99/3^99-100/3^100`

    `⇒3A=1-2/3+3/3^2-4/3^3+…+99/3^98-100/3^99`

    `⇒3A+A=4A=1-1/3+1/3^2-1/3^3+…+1/3^98-1/3^99-100/3^100`

    $⇒ -\dfrac 13.4A=-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+..+\dfrac{1}{3^{100}}+\dfrac{100}{3^{101}}$

    $⇒ 4A-(-\dfrac 13.4A)=1-\dfrac{99}{3^{100}}+\dfrac{100}{3^{101}}$

    $⇒ \dfrac{16A}{3}=1-\dfrac{1}{3^{100}}(99-\dfrac{100}{3})$

    `⇒A=48-1/(3^99 . 16)(99-100/3)`

     

    Bình luận

Viết một bình luận