Tính: `((2/7)^(7).5^7+(9/3)^3:(3/16)^3)/(2^(7).5^7+256)` 05/11/2021 Bởi Caroline Tính: `((2/7)^(7).5^7+(9/3)^3:(3/16)^3)/(2^(7).5^7+256)`
Đáp án: $\begin{array}{l}\dfrac{{{{\left( {\dfrac{2}{7}} \right)}^7}{{.5}^7} + {{\left( {\dfrac{9}{3}} \right)}^3}:{{\left( {\dfrac{3}{{16}}} \right)}^3}}}{{{2^7}{{.5}^7} + 256}}\\ = \dfrac{{\dfrac{{{2^7}{{.5}^7}}}{{{7^7}}} + {3^3}.\dfrac{{{{\left( {{2^4}} \right)}^3}}}{{{3^3}}}}}{{{2^7}{{.5}^7} + {2^8}}}\\ = \dfrac{{\dfrac{{{2^7}{{.5}^7}}}{{{7^7}}} + {2^{12}}}}{{{2^7}{{.5}^7} + {2^8}}}\\ = \dfrac{{{2^7}\left[ {{{\left( {\dfrac{5}{7}} \right)}^7} + {2^5}} \right]}}{{{2^7}\left( {{5^7} + 2} \right)}}\\ = \dfrac{{{5^7} + {2^5}{{.7}^7}}}{{{7^7}{{.5}^7} + {{2.7}^7}}}\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
\dfrac{{{{\left( {\dfrac{2}{7}} \right)}^7}{{.5}^7} + {{\left( {\dfrac{9}{3}} \right)}^3}:{{\left( {\dfrac{3}{{16}}} \right)}^3}}}{{{2^7}{{.5}^7} + 256}}\\
= \dfrac{{\dfrac{{{2^7}{{.5}^7}}}{{{7^7}}} + {3^3}.\dfrac{{{{\left( {{2^4}} \right)}^3}}}{{{3^3}}}}}{{{2^7}{{.5}^7} + {2^8}}}\\
= \dfrac{{\dfrac{{{2^7}{{.5}^7}}}{{{7^7}}} + {2^{12}}}}{{{2^7}{{.5}^7} + {2^8}}}\\
= \dfrac{{{2^7}\left[ {{{\left( {\dfrac{5}{7}} \right)}^7} + {2^5}} \right]}}{{{2^7}\left( {{5^7} + 2} \right)}}\\
= \dfrac{{{5^7} + {2^5}{{.7}^7}}}{{{7^7}{{.5}^7} + {{2.7}^7}}}
\end{array}$