Tính : ( 3.4.2^16)^2 phần 11.2^13 . 4^11 – 16^9 3^11.11+3^11.21 phần 3^9 . 2^5

Tính : ( 3.4.2^16)^2 phần 11.2^13 . 4^11 – 16^9
3^11.11+3^11.21 phần 3^9 . 2^5

0 bình luận về “Tính : ( 3.4.2^16)^2 phần 11.2^13 . 4^11 – 16^9 3^11.11+3^11.21 phần 3^9 . 2^5”

  1. Giải thích các bước giải:

    `(3.4.2^16)^2/(11. 2^13. 4^11-16^9)`
    `=[3.(2^2).2^16]^2/(11. 2^13. (2^2)^11-(2^4)^9)`
    `=(3^2 . 2^4 . 2^32)/(11. 2^13. 2^22 -2^36)`
    `=(3^2 . 2^36)/(11. 2^35 -2^36)`
    `=(3^2 . 2^36)/(2^35 . (11-2))`
    `=(3^2 . 2^36)/(2^35 . 3^2)`
    `=2`
    `(3^11  .11+3^11  .21)/(3^9 . 2^5)`
    `=(3^11 . (11+21))/(3^9 . 2^5)`
    `=(3^11 . 32)/(3^9 . 2^5)`
    `=(3^11 . 2^5 )/(3^9 . 2^5)`
    `=3^2`
    `=9`

    Bình luận
  2. $\begin{array}{l}\quad\dfrac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\\=\dfrac{\left(3.2^2.2^{16}\right)^2}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}\\=\dfrac{\left(3.2^{18}\right)^2}{11.2^{13}.2^{22}-2^{36}}\\=\dfrac{3^2.2^{36}}{11.2^{35}-2^{36}}\\=\dfrac{3^2.2^{36}}{2^{35}.(11-2)}\\=\dfrac{9.2^{36}}{2^{35}.9}\\=2\\\,\\\quad\dfrac{3^{11}.11+3^{11}.21}{3^9.2^5}\\=\dfrac{3^{11}.(11+21)}{3^9.32}\\=\dfrac{3^{11}.32}{3^9.32}\\=3^2\\=9 \end{array}$

    Bình luận

Viết một bình luận