Tinh A=x ³-30x ²-31x+1 tại x=31 B=x^5-15x^4+16x^3-29x^2+13x tại x=14 C=x^14-10x^13+10x^12-10x^11+…+10x^2-10x+10 tai x=9 25/09/2021 Bởi Rylee Tinh A=x ³-30x ²-31x+1 tại x=31 B=x^5-15x^4+16x^3-29x^2+13x tại x=14 C=x^14-10x^13+10x^12-10x^11+…+10x^2-10x+10 tai x=9
Giải thích các bước giải: a) Ta có; $\begin{array}{l}A = {x^3} – 30{x^2} – 31x + 1\\ = \left( {{x^3} – 31{x^2}} \right) + \left( {{x^2} – 31x} \right) + 1\\ = {x^2}\left( {x – 31} \right) + x\left( {x – 31} \right) + 1\end{array}$ Khi $x = 31 \Rightarrow x – 31 = 0 \Rightarrow A = 1$ Vậy $A=1$ khi $x=31$ b) Ta có: $\begin{array}{l}B = {x^5} – 15{x^4} + 16{x^3} – 29{x^2} + 13x\\ = \left( {{x^5} – 14{x^4}} \right) – \left( {{x^4} – 14{x^3}} \right) + 2\left( {{x^3} – 14{x^2}} \right) – \left( {{x^2} – 14x} \right) – x\\ = {x^4}\left( {x – 14} \right) – {x^3}\left( {x – 14} \right) + 2{x^2}\left( {x – 14} \right) – x\left( {x – 14} \right) – x\end{array}$ Khi $x = 14 \Rightarrow x – 14 = 0 \Rightarrow B = – 14$ Vậy $B=-14$ c) Ta có: Khi $x=9$ thì: $\begin{array}{l}C = {x^{14}} – 10{x^{13}} + 10{x^{12}} – 10{x^{11}} + … + 10{x^2} – 10x + 10\\ = {x^{14}} – \left( {x + 1} \right){x^{13}} + \left( {x + 1} \right){x^{12}} – \left( {x + 1} \right){x^{11}} + … + \left( {x + 1} \right){x^2} – \left( {x + 1} \right)x + x + 1\\ = {x^{14}} – {x^{14}} – {x^{13}} + {x^{13}} + {x^{12}} – {x^{12}} – {x^{11}} + … + {x^3} + {x^2} – {x^2} – x + x + 1\\ = 1\end{array}$ Bình luận
Giải thích các bước giải:
a) Ta có;
$\begin{array}{l}
A = {x^3} – 30{x^2} – 31x + 1\\
= \left( {{x^3} – 31{x^2}} \right) + \left( {{x^2} – 31x} \right) + 1\\
= {x^2}\left( {x – 31} \right) + x\left( {x – 31} \right) + 1
\end{array}$
Khi $x = 31 \Rightarrow x – 31 = 0 \Rightarrow A = 1$
Vậy $A=1$ khi $x=31$
b) Ta có:
$\begin{array}{l}
B = {x^5} – 15{x^4} + 16{x^3} – 29{x^2} + 13x\\
= \left( {{x^5} – 14{x^4}} \right) – \left( {{x^4} – 14{x^3}} \right) + 2\left( {{x^3} – 14{x^2}} \right) – \left( {{x^2} – 14x} \right) – x\\
= {x^4}\left( {x – 14} \right) – {x^3}\left( {x – 14} \right) + 2{x^2}\left( {x – 14} \right) – x\left( {x – 14} \right) – x
\end{array}$
Khi $x = 14 \Rightarrow x – 14 = 0 \Rightarrow B = – 14$
Vậy $B=-14$
c) Ta có:
Khi $x=9$ thì:
$\begin{array}{l}
C = {x^{14}} – 10{x^{13}} + 10{x^{12}} – 10{x^{11}} + … + 10{x^2} – 10x + 10\\
= {x^{14}} – \left( {x + 1} \right){x^{13}} + \left( {x + 1} \right){x^{12}} – \left( {x + 1} \right){x^{11}} + … + \left( {x + 1} \right){x^2} – \left( {x + 1} \right)x + x + 1\\
= {x^{14}} – {x^{14}} – {x^{13}} + {x^{13}} + {x^{12}} – {x^{12}} – {x^{11}} + … + {x^3} + {x^2} – {x^2} – x + x + 1\\
= 1
\end{array}$