tính a/b biết a=1/1.300+1/2.301+…+1/101.400 b=1/1.102+1/2.103+..+1/299.400

tính a/b biết
a=1/1.300+1/2.301+…+1/101.400
b=1/1.102+1/2.103+..+1/299.400

0 bình luận về “tính a/b biết a=1/1.300+1/2.301+…+1/101.400 b=1/1.102+1/2.103+..+1/299.400”

  1. Đáp án:

     101/299

    Giải thích các bước giải:

    Ta có: A=1/1.300+1/2.301+…+1/101.400

    →A=1/299.(299/1.300+299/2.301+…+299/101.400)

    →A=1/299. ( 1+1/300+1/2-1/301+….+1/101-1/400)

    →A= 1/299.(1+1/2+….+1/101)-(1/300+1/301+….+1/400)

    Ta có: b=1/1.102+1/2.103+..+1/299.400

    → B= 1/101.(101/1.102+101/2.103+..+101/299.400)

    → B= 1/101 .(1+1/2+….+1/299) – (1/102+1/103+….+1/400)

    → B= (1+1/2+….+1/299)- (1/300+1/301+….+1/400)

    →A=1/299.(1+1/2+….+1/101)-(1/300+1/301+….+1/400)

    phần

    b=1/101.(1+1/2+….+1/101)-(1/300+1/301+….+1/400)

    →A/B=1/299:1/101

    →A/B=101/299

    vậy A/B=101/299

     

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    Ta có: a=1/1.300+1/2.301+…+1/101.400

    ⇒ a= 1/299.(299/1.300+299/2.301+…+299/101.400)

    ⇒ a= 1/299. ( 1+1/300+1/2-1/301+….+1/101-1/400)

    ⇒ a= 1/299.|(1+1/2+….+1/101)-(1/300+1/301+….+1/400)|

    Ta có: b=1/1.102+1/2.103+..+1/299.400

    ⇒ b= 1/101.(101/1.102+101/2.103+..+101/299.400)

    ⇒ 1/101.|(1-1/102+1/2-1/102+……+1/299-1/400)|

    ⇒ b= 1/101 .|(1+1/2+….+1/299) – (1/102+1/103+….+1/400)|

    ⇒ b= |(1+1/2+….+1/299)- (1/300+1/301+….+1/400)|

    ⇒a=1/299.|(1+1/2+….+1/101)-(1/300+1/301+….+1/400)|

    phần

    b=1/101.|(1+1/2+….+1/101)-(1/300+1/301+….+1/400)| 

    ⇒a/b=1/299:1/101

    ⇒a/b=101/299

    Bình luận

Viết một bình luận