tính a/b biết a=1/1.300+1/2.301+…+1/101.400 b=1/1.102+1/2.103+..+1/299.400 06/11/2021 Bởi Daisy tính a/b biết a=1/1.300+1/2.301+…+1/101.400 b=1/1.102+1/2.103+..+1/299.400
Đáp án: 101/299 Giải thích các bước giải: Ta có: A=1/1.300+1/2.301+…+1/101.400 →A=1/299.(299/1.300+299/2.301+…+299/101.400) →A=1/299. ( 1+1/300+1/2-1/301+….+1/101-1/400) →A= 1/299.(1+1/2+….+1/101)-(1/300+1/301+….+1/400) Ta có: b=1/1.102+1/2.103+..+1/299.400 → B= 1/101.(101/1.102+101/2.103+..+101/299.400) → B= 1/101 .(1+1/2+….+1/299) – (1/102+1/103+….+1/400) → B= (1+1/2+….+1/299)- (1/300+1/301+….+1/400) →A=1/299.(1+1/2+….+1/101)-(1/300+1/301+….+1/400) phần b=1/101.(1+1/2+….+1/101)-(1/300+1/301+….+1/400) →A/B=1/299:1/101 →A/B=101/299 vậy A/B=101/299 Bình luận
Đáp án: Giải thích các bước giải: Ta có: a=1/1.300+1/2.301+…+1/101.400 ⇒ a= 1/299.(299/1.300+299/2.301+…+299/101.400) ⇒ a= 1/299. ( 1+1/300+1/2-1/301+….+1/101-1/400) ⇒ a= 1/299.|(1+1/2+….+1/101)-(1/300+1/301+….+1/400)| Ta có: b=1/1.102+1/2.103+..+1/299.400 ⇒ b= 1/101.(101/1.102+101/2.103+..+101/299.400) ⇒ 1/101.|(1-1/102+1/2-1/102+……+1/299-1/400)| ⇒ b= 1/101 .|(1+1/2+….+1/299) – (1/102+1/103+….+1/400)| ⇒ b= |(1+1/2+….+1/299)- (1/300+1/301+….+1/400)| ⇒a=1/299.|(1+1/2+….+1/101)-(1/300+1/301+….+1/400)| phần b=1/101.|(1+1/2+….+1/101)-(1/300+1/301+….+1/400)| ⇒a/b=1/299:1/101 ⇒a/b=101/299 Bình luận
Đáp án:
101/299
Giải thích các bước giải:
Ta có: A=1/1.300+1/2.301+…+1/101.400
→A=1/299.(299/1.300+299/2.301+…+299/101.400)
→A=1/299. ( 1+1/300+1/2-1/301+….+1/101-1/400)
→A= 1/299.(1+1/2+….+1/101)-(1/300+1/301+….+1/400)
Ta có: b=1/1.102+1/2.103+..+1/299.400
→ B= 1/101.(101/1.102+101/2.103+..+101/299.400)
→ B= 1/101 .(1+1/2+….+1/299) – (1/102+1/103+….+1/400)
→ B= (1+1/2+….+1/299)- (1/300+1/301+….+1/400)
→A=1/299.(1+1/2+….+1/101)-(1/300+1/301+….+1/400)
phần
b=1/101.(1+1/2+….+1/101)-(1/300+1/301+….+1/400)
→A/B=1/299:1/101
→A/B=101/299
vậy A/B=101/299
Đáp án:
Giải thích các bước giải:
Ta có: a=1/1.300+1/2.301+…+1/101.400
⇒ a= 1/299.(299/1.300+299/2.301+…+299/101.400)
⇒ a= 1/299. ( 1+1/300+1/2-1/301+….+1/101-1/400)
⇒ a= 1/299.|(1+1/2+….+1/101)-(1/300+1/301+….+1/400)|
Ta có: b=1/1.102+1/2.103+..+1/299.400
⇒ b= 1/101.(101/1.102+101/2.103+..+101/299.400)
⇒ 1/101.|(1-1/102+1/2-1/102+……+1/299-1/400)|
⇒ b= 1/101 .|(1+1/2+….+1/299) – (1/102+1/103+….+1/400)|
⇒ b= |(1+1/2+….+1/299)- (1/300+1/301+….+1/400)|
⇒a=1/299.|(1+1/2+….+1/101)-(1/300+1/301+….+1/400)|
phần
b=1/101.|(1+1/2+….+1/101)-(1/300+1/301+….+1/400)|
⇒a/b=1/299:1/101
⇒a/b=101/299