Tính
a. S= 1.3+3.5+5.7+…..+97.99
b. S=1.3.5+3.5.7+5.7.9+….+95.97.99
c. S=1.2+3.4+5.6+7.8+……+99.100
d. S=1.2.3+3.4.5+5.6.7+…+99.100.101
Tính
a. S= 1.3+3.5+5.7+…..+97.99
b. S=1.3.5+3.5.7+5.7.9+….+95.97.99
c. S=1.2+3.4+5.6+7.8+……+99.100
d. S=1.2.3+3.4.5+5.6.7+…+99.100.101
Đáp án:
Giải thích các bước giải:
a) ta có S=1(1+2)+3(2+3)+5(2+5)+…+97(97+2)+99(99+2)
S=1*1+1*2+3*2+3*3+…+97*97+97*2+99*99+99*2
S= (1^2+3^2+5^2 +…+97^2+99^2)+2(1+3+5+…+99)
S=166650+2*2500
S= 171650
D) S= 9*10*11*12/4=2970
B) ta có s= 1*3*5+3*5*7+5*7*9+…+95*97*99
=>8S = 1.3.5.8 + 3.5.7.8 + 5.7.9.8 + … + 95.97.99.8
= 1.3.5(7 + 1) + 3.5.7(9 – 1) + 5.7.9(11 – 3) +… +95.97.99(101 – 93)
= 1.3.5.7 + 15 + 3.5.7.9 – 1.3.5.7 + 5.7.9.11 – 3.5.7.9 + …+ 95.97.99.101 – 93.95.97.99
= 15 + 95.97.99.101
=> 8s=15 + 92140785=92140800
=> 8s = 92140800
s= 11517600
c) 3s= 1*2*3+3*4(5-2) + 5 . 6 . ( 7 – 4 ) +…..+ 99 . 100 . (101 – 98 )
3s = 1. 2 . 3 + 3. 4 . 5 – 2 . 3 . 4 + 5 . 6 . 7 – 4 . 5 . 6 +…..+ 99 . 100 . 101 – 98 . 99 . 100
3s = 1 . 2 . 3 + 99 . 100. 101
3s = 3 . 2 + 3 . 33 . 100 . 101
3s = 3 ( 2 + 333 300)
=>s = 3 . 333 302 : 3
=> s = 333 302
Bài làm :
`6S=1.3.6 + 3.5.6 + 5.7.6 + … + 97.99.6`
`=1.3(5+1) + 3.5(7-1) + 5.7(9-3) + … + 97.99(101-95)`
`=1.3.5 + 1.3 + 3.5.7 – 1.3.5 + 5.7.9 – 3.5.7 + … + 97.99.101 – 95.97.99`
`=1.3.5 + 3 + 3.5.7 – 1.3.5 + 5.7.9 – 3.5.7+ … + 97.99.101 – 97.97.99`
`=3+97.99.101`
`⇒S=(3+97.99.101)/6`
`S=161651`
`8S=1.3.5.8 + 3.5.7.8 + 5.7.9.8 + … + 95.97.99.8`
`= 1.3.5(7 + 1) + 3.5.7(9 – 1) + 5.7.9(11 – 3) + … + 95.97.99(101 – 93)`
`= 1.3.5.7 + 15 + 3.5.7.9 – 1.3.5.7 + 5.7.9.11 – 3.5.7.9 + … + 95.97.99.101 – 93.95.97.99`
`= 15 + 95.97.99.101`
`⇒S=(15 + 95.97.99.101)/8`
`S=11517600`
` S= (2 – 1).2 + (4 – 1).4 + (6 – 1).6 + … + (100 – 1).100`
`= 2^2 – 2 + 4^2 – 4 + 6^2 – 6 + … + 100^2 – 100`
`= (2^2 + 4^2 + 6^2 + … + 100^2) – (2 + 4 + 6 + … + 100)`
`= 2^2.(1^2 + 2^2 + 3^2 + … + 50^2) – (100 + 2).50/2` ( kết quả câu trên)
`⇒=(22.50.51.52 )/6 – 51.50`
`S= 85850`
`S = 1.2.3+3.4.5+5.6.7+…+99.100.101`
` = 1.3 (5-3) + 3.5 (7-3) + 5.7 (9-3) + ………… + 99.101 (103 – 3)`
` = (1.3.5 + 3.5.7 + 5.7.9 + ………. + 99.101.103) – (1.3.3 + 3.5.3 + ……. + 99.101.3)`
`= (15+99.101.103.105/8 – 3.(1.3 + 3.5 +5.7 + …… + 99.101)`
`⇒S = 13517400 – 3.171650` (kết quả câu đầu)
`S= 13002450`