$Đặt$ $tử$ $số$ $là$ $A$,$mẫu$ $số$ $là$ $C$ ⇒ $A$ $=$ $1$ + $2$ + $2^2$ + $2^3$ +….+ $2^{2019}$ $2A$ $=$ $2$ + $2^2$ + $2^3$ +…+ $2^{2020}$ $2A-A$ $=$$2$+$2^2$+$2^3$+…+$2^{2020}$-($1$+$2$+$2^2$+$2^3$+….+$2^{2019}$) $A$ $=$ $2$+$2^2$+$2^3$+…+$2^{2020}$-$1$-$2$-$2^2$-$2^3$-…-$2^{2019}$ $A$ $=$ $2^{2020}$-$1$ $Vậy$ $ta$ $có$ $phân$ $số$ $là :$ $\frac{A}{C}$ =$\frac{2^{2020}-1}{1-2^{2020}}$ = – $\frac{1-2^{2020}}{1-2^{2020}}$ = $-1$ Bình luận
Đặt tử số là A=$1$+$2$+$2^2$+$2^3$+….+$2^{2019}$ 2A=$2$+$2^2$+$2^3$+…+$2^{2020}$ 2A-A=$2$+$2^2$+$2^3$+…+$2^{2020}$-($1$+$2$+$2^2$+$2^3$+….+$2^{2019}$) A=$2$+$2^2$+$2^3$+…+$2^{2020}$-$1$-$2$-$2^2$-$2^3$-…-$2^{2019}$ A=$2^{2020}$-$1$ Vậy ta có phân số là : B=$\frac{2^{2020}-1}{1-2^{2020}}$ = – $\frac{1-2^{2020}}{1-2^{2020}}$ = $-1$ Bình luận
$Đặt$ $tử$ $số$ $là$ $A$,$mẫu$ $số$ $là$ $C$
⇒ $A$ $=$ $1$ + $2$ + $2^2$ + $2^3$ +….+ $2^{2019}$
$2A$ $=$ $2$ + $2^2$ + $2^3$ +…+ $2^{2020}$
$2A-A$ $=$$2$+$2^2$+$2^3$+…+$2^{2020}$-($1$+$2$+$2^2$+$2^3$+….+$2^{2019}$)
$A$ $=$ $2$+$2^2$+$2^3$+…+$2^{2020}$-$1$-$2$-$2^2$-$2^3$-…-$2^{2019}$
$A$ $=$ $2^{2020}$-$1$
$Vậy$ $ta$ $có$ $phân$ $số$ $là :$
$\frac{A}{C}$ =$\frac{2^{2020}-1}{1-2^{2020}}$ = – $\frac{1-2^{2020}}{1-2^{2020}}$ = $-1$
Đặt tử số là A=$1$+$2$+$2^2$+$2^3$+….+$2^{2019}$
2A=$2$+$2^2$+$2^3$+…+$2^{2020}$
2A-A=$2$+$2^2$+$2^3$+…+$2^{2020}$-($1$+$2$+$2^2$+$2^3$+….+$2^{2019}$)
A=$2$+$2^2$+$2^3$+…+$2^{2020}$-$1$-$2$-$2^2$-$2^3$-…-$2^{2019}$
A=$2^{2020}$-$1$
Vậy ta có phân số là :
B=$\frac{2^{2020}-1}{1-2^{2020}}$ = – $\frac{1-2^{2020}}{1-2^{2020}}$ = $-1$