tính đạo hàm của hàm số sau: y=$\frac{(x+1)^{3}}{(x-1)^{2}}$ 29/10/2021 Bởi Piper tính đạo hàm của hàm số sau: y=$\frac{(x+1)^{3}}{(x-1)^{2}}$
Áp dụng công thức tính đạo hàm ` (u/v)’ = (u’v – uv’)/(v^2)` Đặt ` u = (x+1)^3 ; v = (x-1)^2` ` => u’ = (x+1)^3′ = 3(x+1)^2` ` v’ = (x-1)^2′ = 2(x-1)` ` => y’ = (((x+1)^3)/((x-1)^2))’ = (3(x+1)^2*(x-1)^2 – (x+1)^3*2*(x-1))/((x-1)^4)` ` = (3(x-1)^2(x+1)^2 – (x^3 +3x^2 +3x +1)*2*(x-1))/((x-1)^4)` ` = (3(x-1)^2(x+1)^2 – (2x^3 + 6x^2 +6x +2)(x-1))/(x-1)^4` ` = (3(x-1)(x+1)^2 – 2x^3 -6x^2 -6x -2)/((x-1)^3)` ` = (3*(x^2-1)(x+1) – 2x^3 -6x^2 -6x -2)/((x-1)^3)` ` = (3x^3 + 3x^2 – 3x-3 -2x^3 -6x^2 -6x -2)/((x-1)^3)` ` = (x^3 – 3x^2 – 9x – 5)/((x-1)^3)` Bình luận
Đáp án: $\begin{array}{l}y = \dfrac{{{{\left( {x + 1} \right)}^3}}}{{{{\left( {x – 1} \right)}^2}}}\\ \Rightarrow y’ = \dfrac{{3.{{\left( {x + 1} \right)}^2}.{{\left( {x – 1} \right)}^2} – {{\left( {x + 1} \right)}^3}.2.\left( {x – 1} \right)}}{{{{\left( {x – 1} \right)}^4}}}\\ = \dfrac{{3{{\left( {{x^2} – 1} \right)}^2} – 2.\left( {{x^3} + 3{x^2} + 3x + 1} \right)\left( {x – 1} \right)}}{{{{\left( {x – 1} \right)}^4}}}\\ = \dfrac{{3{x^4} – 6{x^2} + 3 – 2{x^4} – 4{x^2} + 4x + 2}}{{{{\left( {x – 1} \right)}^4}}}\\ = \dfrac{{{x^4} – 10{x^2} + 4x + 5}}{{{{\left( {x – 1} \right)}^4}}}\end{array}$ Bình luận
Áp dụng công thức tính đạo hàm ` (u/v)’ = (u’v – uv’)/(v^2)`
Đặt ` u = (x+1)^3 ; v = (x-1)^2`
` => u’ = (x+1)^3′ = 3(x+1)^2`
` v’ = (x-1)^2′ = 2(x-1)`
` => y’ = (((x+1)^3)/((x-1)^2))’ = (3(x+1)^2*(x-1)^2 – (x+1)^3*2*(x-1))/((x-1)^4)`
` = (3(x-1)^2(x+1)^2 – (x^3 +3x^2 +3x +1)*2*(x-1))/((x-1)^4)`
` = (3(x-1)^2(x+1)^2 – (2x^3 + 6x^2 +6x +2)(x-1))/(x-1)^4`
` = (3(x-1)(x+1)^2 – 2x^3 -6x^2 -6x -2)/((x-1)^3)`
` = (3*(x^2-1)(x+1) – 2x^3 -6x^2 -6x -2)/((x-1)^3)`
` = (3x^3 + 3x^2 – 3x-3 -2x^3 -6x^2 -6x -2)/((x-1)^3)`
` = (x^3 – 3x^2 – 9x – 5)/((x-1)^3)`
Đáp án:
$\begin{array}{l}
y = \dfrac{{{{\left( {x + 1} \right)}^3}}}{{{{\left( {x – 1} \right)}^2}}}\\
\Rightarrow y’ = \dfrac{{3.{{\left( {x + 1} \right)}^2}.{{\left( {x – 1} \right)}^2} – {{\left( {x + 1} \right)}^3}.2.\left( {x – 1} \right)}}{{{{\left( {x – 1} \right)}^4}}}\\
= \dfrac{{3{{\left( {{x^2} – 1} \right)}^2} – 2.\left( {{x^3} + 3{x^2} + 3x + 1} \right)\left( {x – 1} \right)}}{{{{\left( {x – 1} \right)}^4}}}\\
= \dfrac{{3{x^4} – 6{x^2} + 3 – 2{x^4} – 4{x^2} + 4x + 2}}{{{{\left( {x – 1} \right)}^4}}}\\
= \dfrac{{{x^4} – 10{x^2} + 4x + 5}}{{{{\left( {x – 1} \right)}^4}}}
\end{array}$