Tính : E = 1 + 3 / 2^3 + 4 / 2^4 + 5 / 2^5 + … + 100 / 2^100 vinh6adck mô rồi 19/07/2021 Bởi Mary Tính : E = 1 + 3 / 2^3 + 4 / 2^4 + 5 / 2^5 + … + 100 / 2^100 vinh6adck mô rồi
Đáp án: A=1+3/2^3+4/2^4+5/2^5+…100/2^1001/2*A = 1/2 + 3/2^4 + 4/2^5 +….+ 99/2^100 + 100/2^101 A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +…+1/2^100 – 100/2^101= = [1/2+1/2^2 +1/2^3 +…+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3) =[1-(1/2)^101]/(1-1/2) -100/2^101 = =(2^101 -1)/2^100 – 100/2^101 => A= (2^101 -1)/2^99 – 100/2^100 Bình luận
Đáp án:
A=1+3/2^3+4/2^4+5/2^5+…100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +….+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +…+1/2^100 – 100/2^101=
= [1/2+1/2^2 +1/2^3 +…+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 – 100/2^101
=> A= (2^101 -1)/2^99 – 100/2^100