Tính: $\frac{2+√3}{√2+√(2+√3)}$ + $\frac{2-√3}{√2-√(2-√3}$ 02/08/2021 Bởi Harper Tính: $\frac{2+√3}{√2+√(2+√3)}$ + $\frac{2-√3}{√2-√(2-√3}$
Đáp án: 1 Giải thích các bước giải: \(\begin{array}{l}\dfrac{{2 + \sqrt 3 }}{{\sqrt 2 + \sqrt {2 + \sqrt 3 } }} + \dfrac{{2 – \sqrt 3 }}{{\sqrt 2 – \sqrt {2 – \sqrt 3 } }}\\ = \dfrac{{2 + \sqrt 3 }}{{2 + \sqrt {4 + 2\sqrt 3 } }} + \dfrac{{2 – \sqrt 3 }}{{2 – \sqrt {4 – 2\sqrt 3 } }}\\ = \dfrac{{2 + \sqrt 3 }}{{2 + \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} }} + \dfrac{{2 – \sqrt 3 }}{{2 – \sqrt {{{\left( {\sqrt 3 – 1} \right)}^2}} }}\\ = \dfrac{{2 + \sqrt 3 }}{{2 + \sqrt 3 + 1}} + \dfrac{{2 – \sqrt 3 }}{{2 – \sqrt 3 + 1}}\\ = \dfrac{{2 + \sqrt 3 }}{{3 + \sqrt 3 }} + \dfrac{{2 – \sqrt 3 }}{{3 – \sqrt 3 }}\\ = \dfrac{{\left( {2 + \sqrt 3 } \right)\left( {3 – \sqrt 3 } \right) + \left( {2 – \sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{{9 – 3}}\\ = \dfrac{{6 – 2\sqrt 3 + 3\sqrt 3 – 3 + 2\sqrt 3 + 6 – 3\sqrt 3 – 3}}{6}\\ = \dfrac{6}{6} = 1\end{array}\) Bình luận
đặt A=đề bài`=(2√2+√6)/(2+sqrt{4+2√3})+(2√2-√6)/(2-sqrt{4-2√3})``=(2√2+√6)/(2+1+sqrt{3})+(2√2-√6)/(2+1-sqrt{3})``=(2√2+√6)/(3+sqrt{3})+(2√2-√6)/(3-sqrt{3})``=(2√2+√6)(3-sqrt{3})/6+(2√2-√6)(3+sqrt{3})/6``=(6√2-2√6+3√6-3√2+6√2+2√6-3√6+3√2)/6``=(12√2)/6=2√2` Bình luận
Đáp án:
1
Giải thích các bước giải:
\(\begin{array}{l}
\dfrac{{2 + \sqrt 3 }}{{\sqrt 2 + \sqrt {2 + \sqrt 3 } }} + \dfrac{{2 – \sqrt 3 }}{{\sqrt 2 – \sqrt {2 – \sqrt 3 } }}\\
= \dfrac{{2 + \sqrt 3 }}{{2 + \sqrt {4 + 2\sqrt 3 } }} + \dfrac{{2 – \sqrt 3 }}{{2 – \sqrt {4 – 2\sqrt 3 } }}\\
= \dfrac{{2 + \sqrt 3 }}{{2 + \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} }} + \dfrac{{2 – \sqrt 3 }}{{2 – \sqrt {{{\left( {\sqrt 3 – 1} \right)}^2}} }}\\
= \dfrac{{2 + \sqrt 3 }}{{2 + \sqrt 3 + 1}} + \dfrac{{2 – \sqrt 3 }}{{2 – \sqrt 3 + 1}}\\
= \dfrac{{2 + \sqrt 3 }}{{3 + \sqrt 3 }} + \dfrac{{2 – \sqrt 3 }}{{3 – \sqrt 3 }}\\
= \dfrac{{\left( {2 + \sqrt 3 } \right)\left( {3 – \sqrt 3 } \right) + \left( {2 – \sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{{9 – 3}}\\
= \dfrac{{6 – 2\sqrt 3 + 3\sqrt 3 – 3 + 2\sqrt 3 + 6 – 3\sqrt 3 – 3}}{6}\\
= \dfrac{6}{6} = 1
\end{array}\)
đặt A=đề bài
`=(2√2+√6)/(2+sqrt{4+2√3})+(2√2-√6)/(2-sqrt{4-2√3})`
`=(2√2+√6)/(2+1+sqrt{3})+(2√2-√6)/(2+1-sqrt{3})`
`=(2√2+√6)/(3+sqrt{3})+(2√2-√6)/(3-sqrt{3})`
`=(2√2+√6)(3-sqrt{3})/6+(2√2-√6)(3+sqrt{3})/6`
`=(6√2-2√6+3√6-3√2+6√2+2√6-3√6+3√2)/6`
`=(12√2)/6=2√2`