Tính giá trị biểu thức a) x^5y – xy^5 biết x – y =2 ; x^2 + y^2 =4 b) x^5 -32y^5 biết xy = 3; x + 2y =7: x>2y 03/09/2021 Bởi Hailey Tính giá trị biểu thức a) x^5y – xy^5 biết x – y =2 ; x^2 + y^2 =4 b) x^5 -32y^5 biết xy = 3; x + 2y =7: x>2y
Đáp án: a) 0; b)7775 Giải thích các bước giải: \[\begin{array}{l}a){x^5}y – x{y^5} = xy\left( {{x^4} – {y^4}} \right)\\\left\{ \begin{array}{l}x – y = 2\\{x^2} + {y^2} = 4\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\left( {x – y} \right)^2} = 4\\{x^2} + {y^2} = 4\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}{x^2} + {y^2} – 2xy = 4\\{x^2} + {y^2} = 4\end{array} \right. \Rightarrow xy = 0\\ \Rightarrow {x^5}y – x{y^5} = xy\left( {{x^4} – {y^4}} \right) = 0\\b){x^5} – 32{y^5}\\ = {x^5} – {\left( {2y} \right)^5}\\ = \left( {x – 2y} \right)\left( {{x^4} + {x^3}.2y + {x^2}.{{\left( {2y} \right)}^2} + x.{{\left( {2y} \right)}^3} + {{\left( {2y} \right)}^4}} \right)\\ + ){x^4} + {x^3}.2y + {x^2}.{\left( {2y} \right)^2} + x.{\left( {2y} \right)^3} + {\left( {2y} \right)^4}\\ = \left( {{x^4} + 2{x^2}.{{\left( {2y} \right)}^2} + {{\left( {2y} \right)}^4}} \right) – {x^2}.{\left( {2y} \right)^2} + {x^3}.2y + x.{\left( {2y} \right)^3}\\ = {\left( {{x^2} + {{\left( {2y} \right)}^2}} \right)^2} + 2xy\left( {{x^2} – 2xy + 4{y^2}} \right)\\ = {\left( {{{\left( {x + 2y} \right)}^2} – 2.x.2y} \right)^2} + 2xy\left( {{{\left( {x + 2y} \right)}^2} – 6xy} \right)\\ = {\left( {{7^2} – 4.3} \right)^2} + 2.3.\left( {{7^2} – 6.3} \right)\\ = 1555\\ + )x + 2y = 7\\ \Rightarrow {\left( {x + 2y} \right)^2} = 49\\ \Leftrightarrow {x^2} + 4xy + 4{y^2} = 49\\ \Leftrightarrow {x^2} – 4xy + 4{y^2} + 8xy = 49\\ \Leftrightarrow {\left( {x – 2y} \right)^2} + 8xy = 49\\ \Leftrightarrow {\left( {x – 2y} \right)^2} = 49 – 8.3 = 25\\ \Leftrightarrow x – 2y = 5\left( {x > 2y \Rightarrow x – 2y > 0} \right)\\ \Rightarrow {x^5} – 32{y^5} = 5.1555 = 7775\end{array}\] Bình luận
Đáp án:
a) 0; b)7775
Giải thích các bước giải:
\[\begin{array}{l}
a){x^5}y – x{y^5} = xy\left( {{x^4} – {y^4}} \right)\\
\left\{ \begin{array}{l}
x – y = 2\\
{x^2} + {y^2} = 4
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
{\left( {x – y} \right)^2} = 4\\
{x^2} + {y^2} = 4
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{x^2} + {y^2} – 2xy = 4\\
{x^2} + {y^2} = 4
\end{array} \right. \Rightarrow xy = 0\\
\Rightarrow {x^5}y – x{y^5} = xy\left( {{x^4} – {y^4}} \right) = 0\\
b){x^5} – 32{y^5}\\
= {x^5} – {\left( {2y} \right)^5}\\
= \left( {x – 2y} \right)\left( {{x^4} + {x^3}.2y + {x^2}.{{\left( {2y} \right)}^2} + x.{{\left( {2y} \right)}^3} + {{\left( {2y} \right)}^4}} \right)\\
+ ){x^4} + {x^3}.2y + {x^2}.{\left( {2y} \right)^2} + x.{\left( {2y} \right)^3} + {\left( {2y} \right)^4}\\
= \left( {{x^4} + 2{x^2}.{{\left( {2y} \right)}^2} + {{\left( {2y} \right)}^4}} \right) – {x^2}.{\left( {2y} \right)^2} + {x^3}.2y + x.{\left( {2y} \right)^3}\\
= {\left( {{x^2} + {{\left( {2y} \right)}^2}} \right)^2} + 2xy\left( {{x^2} – 2xy + 4{y^2}} \right)\\
= {\left( {{{\left( {x + 2y} \right)}^2} – 2.x.2y} \right)^2} + 2xy\left( {{{\left( {x + 2y} \right)}^2} – 6xy} \right)\\
= {\left( {{7^2} – 4.3} \right)^2} + 2.3.\left( {{7^2} – 6.3} \right)\\
= 1555\\
+ )x + 2y = 7\\
\Rightarrow {\left( {x + 2y} \right)^2} = 49\\
\Leftrightarrow {x^2} + 4xy + 4{y^2} = 49\\
\Leftrightarrow {x^2} – 4xy + 4{y^2} + 8xy = 49\\
\Leftrightarrow {\left( {x – 2y} \right)^2} + 8xy = 49\\
\Leftrightarrow {\left( {x – 2y} \right)^2} = 49 – 8.3 = 25\\
\Leftrightarrow x – 2y = 5\left( {x > 2y \Rightarrow x – 2y > 0} \right)\\
\Rightarrow {x^5} – 32{y^5} = 5.1555 = 7775
\end{array}\]