Tính giới hạn sau: $\lim_\limits{x \to 1}\dfrac{\sqrt[3]{6x-5}-\sqrt{4x-3}}{(x-1)^2}$ . – Trình bày rõ các bước tìm biểu thức thêm bớt.

Tính giới hạn sau:
$\lim_\limits{x \to 1}\dfrac{\sqrt[3]{6x-5}-\sqrt{4x-3}}{(x-1)^2}$
.
– Trình bày rõ các bước tìm biểu thức thêm bớt.

0 bình luận về “Tính giới hạn sau: $\lim_\limits{x \to 1}\dfrac{\sqrt[3]{6x-5}-\sqrt{4x-3}}{(x-1)^2}$ . – Trình bày rõ các bước tìm biểu thức thêm bớt.”

  1. Giải thích các bước giải:

    Tìm đa thức

     Để tìm được $\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt[3]{{6x – 5}} – \sqrt {4x – 3} }}{{{{\left( {x – 1} \right)}^2}}}$ cần thêm bớt nhị thức bậc nhất $ax+b$ và tử thức để sau khi liên hợp thì $(x-1)^2$ bị triệt tiêu.

    Khi đó:

    $\left\{ \begin{array}{l}
    ax + b = \sqrt {4x – 3} \left( 1 \right)\\
    ax + b = \sqrt[3]{{6x – 5}}
    \end{array} \right.$

    Xét $(1)$ ta có:

    Khi $x=1$ thì $a+b=1(*)$

    Lại có:

    $\begin{array}{l}
    \left( 1 \right) \Leftrightarrow {\left( {ax + b} \right)^2} = 4x – 3\\
     \Leftrightarrow {a^2}{x^2} + 2\left( {ab – 2} \right)x + {b^2} + 3 = 0\left( 2 \right)
    \end{array}$

    Để $(2)$ có nghiệm kép 

    $\begin{array}{l}
     \Leftrightarrow \Delta ‘ = 0\\
     \Leftrightarrow {\left( {ab – 2} \right)^2} – {a^2}\left( {{b^2} + 3} \right) = 0\\
     \Leftrightarrow 3{a^2} + 4ab – 4 = 0\left( {**} \right)
    \end{array}$

    Từ $\left( * \right),\left( {**} \right) \Rightarrow \left\{ \begin{array}{l}
    a + b = 1\\
    3{a^2} + 4ab – 4 = 0
    \end{array} \right.$

    $\begin{array}{l}
     \Leftrightarrow \left\{ \begin{array}{l}
    a + b = 1\\
    3{a^2} + 4a\left( {1 – a} \right) – 4 = 0
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    a + b = 1\\
     – {a^2} + 4a – 4 = 0
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    a + b = 1\\
    {\left( {a – 2} \right)^2} = 0
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    a = 2\\
    b =  – 1
    \end{array} \right.
    \end{array}$

    Như vậy: Đa thức cần thêm bớt là: $2x-1$

    Tìm giới hạn

    $\begin{array}{l}
    \mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt[3]{{6x – 5}} – \sqrt {4x – 3} }}{{{{\left( {x – 1} \right)}^2}}}\\
     = \mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt[3]{{6x – 5}} – \left( {2x – 1} \right) + 2x – 1 – \sqrt {4x – 3} }}{{{{\left( {x – 1} \right)}^2}}}\\
     = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {6x – 5} \right) – {{\left( {2x – 1} \right)}^3}}}{{\left( {{{\left( {\sqrt[3]{{6x – 5}}} \right)}^2} + \sqrt[3]{{6x – 5}}\left( {2x – 1} \right) + {{\left( {2x – 1} \right)}^2}} \right){{\left( {x – 1} \right)}^2}}} + \mathop {\lim }\limits_{x \to 1} \dfrac{{{{\left( {2x – 1} \right)}^2} – \left( {4x – 3} \right)}}{{\left( {2x – 1 + \sqrt {4x – 3} } \right){{\left( {x – 1} \right)}^2}}}\\
     = \mathop {\lim }\limits_{x \to 1} \dfrac{{ – 4\left( {2{x^3} – 3{x^2} + 1} \right)}}{{\left( {{{\left( {\sqrt[3]{{6x – 5}}} \right)}^2} + \sqrt[3]{{6x – 5}}\left( {2x – 1} \right) + {{\left( {2x – 1} \right)}^2}} \right){{\left( {x – 1} \right)}^2}}} + \mathop {\lim }\limits_{x \to 1} \dfrac{{4\left( {{x^2} – 2x + 1} \right)}}{{\left( {2x – 1 + \sqrt {4x – 3} } \right){{\left( {x – 1} \right)}^2}}}\\
     = \mathop {\lim }\limits_{x \to 1} \dfrac{{ – 4\left( {2x + 1} \right)}}{{{{\left( {\sqrt[3]{{6x – 5}}} \right)}^2} + \sqrt[3]{{6x – 5}}\left( {2x – 1} \right) + {{\left( {2x – 1} \right)}^2}}} + \mathop {\lim }\limits_{x \to 1} \dfrac{4}{{2x – 1 + \sqrt {4x – 3} }}\\
     = \dfrac{{ – 4\left( {2.1 + 1} \right)}}{{{{\left( {\sqrt[3]{{6.1 – 5}}} \right)}^2} + \sqrt[3]{{6.1 – 5}}\left( {2.1 – 1} \right) + {{\left( {2.1 – 1} \right)}^2}}} + \dfrac{4}{{2.1 – 1 + \sqrt {4.1 – 3} }}\\
     = \dfrac{{ – 12}}{3} + \dfrac{4}{2}\\
     =  – 2
    \end{array}$

    Bình luận

Viết một bình luận