tính giúp mk vs $\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}$ 02/07/2021 Bởi Parker tính giúp mk vs $\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}$
Đáp án : `(\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16})/(\sqrt{2}+\sqrt{3}+\sqrt{4})=\sqrt{2}+1` Giải thích các bước giải : `(\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16})/(\sqrt{2}+\sqrt{3}+\sqrt{4})``=(\sqrt{2}+\sqrt{3}+\sqrt{2.3}+\sqrt{2.4}+\sqrt{2.2.4})/(\sqrt{2}+\sqrt{3}+\sqrt{4})``=(\sqrt{2}+\sqrt{3}+\sqrt{2.3}+\sqrt{2.4}+2\sqrt{2.2})/(\sqrt{2}+\sqrt{3}+\sqrt{4})``=(\sqrt{2}+\sqrt{3}+\sqrt{2.2}+\sqrt{2.3}+\sqrt{2.4}+\sqrt{2.2})/(\sqrt{2}+\sqrt{3}+\sqrt{4})``=[(\sqrt{2}+\sqrt{3}+\sqrt{4})+(\sqrt{2.2}+\sqrt{2.3}+\sqrt{2.4})]/(\sqrt{2}+\sqrt{3}+\sqrt{4})``=[(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})]/(\sqrt{2}+\sqrt{3}+\sqrt{4})``=[(\sqrt{2}+1)(\sqrt{2}+\sqrt{3}+\sqrt{4})]/(\sqrt{2}+\sqrt{3}+\sqrt{4})``=\sqrt{2}+1`Vậy : `(\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16})/(\sqrt{2}+\sqrt{3}+\sqrt{4})=\sqrt{2}+1` Bình luận
Đáp án: `1+sqrt2` Giải thích các bước giải: `\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}` `=\frac{\sqrt{2}+\sqrt{3}+\sqrt{2.3}+\sqrt{2.4}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}` `={(sqrt2+sqrt3+sqrt4)+sqrt2(sqrt3+sqrt4+sqrt2)}/{\sqrt{2}+\sqrt{3}+\sqrt{4}}` `=1+sqrt2` Bình luận
Đáp án :
`(\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16})/(\sqrt{2}+\sqrt{3}+\sqrt{4})=\sqrt{2}+1`
Giải thích các bước giải :
`(\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16})/(\sqrt{2}+\sqrt{3}+\sqrt{4})`
`=(\sqrt{2}+\sqrt{3}+\sqrt{2.3}+\sqrt{2.4}+\sqrt{2.2.4})/(\sqrt{2}+\sqrt{3}+\sqrt{4})`
`=(\sqrt{2}+\sqrt{3}+\sqrt{2.3}+\sqrt{2.4}+2\sqrt{2.2})/(\sqrt{2}+\sqrt{3}+\sqrt{4})`
`=(\sqrt{2}+\sqrt{3}+\sqrt{2.2}+\sqrt{2.3}+\sqrt{2.4}+\sqrt{2.2})/(\sqrt{2}+\sqrt{3}+\sqrt{4})`
`=[(\sqrt{2}+\sqrt{3}+\sqrt{4})+(\sqrt{2.2}+\sqrt{2.3}+\sqrt{2.4})]/(\sqrt{2}+\sqrt{3}+\sqrt{4})`
`=[(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})]/(\sqrt{2}+\sqrt{3}+\sqrt{4})`
`=[(\sqrt{2}+1)(\sqrt{2}+\sqrt{3}+\sqrt{4})]/(\sqrt{2}+\sqrt{3}+\sqrt{4})`
`=\sqrt{2}+1`
Vậy : `(\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16})/(\sqrt{2}+\sqrt{3}+\sqrt{4})=\sqrt{2}+1`
Đáp án: `1+sqrt2`
Giải thích các bước giải:
`\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}`
`=\frac{\sqrt{2}+\sqrt{3}+\sqrt{2.3}+\sqrt{2.4}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}`
`={(sqrt2+sqrt3+sqrt4)+sqrt2(sqrt3+sqrt4+sqrt2)}/{\sqrt{2}+\sqrt{3}+\sqrt{4}}`
`=1+sqrt2`