tính giúp mk vs $\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}$ + $\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}$

tính giúp mk vs
$\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}$ + $\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}$

0 bình luận về “tính giúp mk vs $\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}$ + $\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}$”

  1. Đáp án:

    `\sqrt{(2-sqrt3)/(2+sqrt3)}+sqrt{(2+sqrt3)/(2-sqrt3)}`

    `=\sqrt{(4-2sqrt3)/(4+2sqrt3)}+sqrt{(4+2sqrt3)/(4-2sqrt3)}`

    `=sqrt{(3-2sqrt3+1)/(3+2sqrt3+1)}+sqrt{(3+2sqrt3+1)/(3-2sqrt3+1)}`

    `=sqrt{(sqrt3-1)^2/(sqrt3+1)^2}+sqrt{(sqrt3+1)^2/(sqrt3-1)^2}`

    `=|(sqrt3-1)/(sqrt3+1)|+|(sqrt3+1)/(sqrt3-1)|`

    `=(sqrt3-1)/(sqrt3+1)+(sqrt3+1)/(sqrt3-1)`

    `=((sqrt3-1)^2)/((sqrt3+1)(sqrt3-1))+((sqrt3+1)^2)/((sqrt3-1)(sqrt3+1))`

    `=(sqrt3-1)^2/2+(sqrt3+1)^2/2`

    `=((sqrt3-1)^2+(sqrt3+1)^2)/2`

    `=(3-2sqrt3+1+3+2sqrt3+1)/2`

    `=8/2=4`

    Bình luận

Viết một bình luận