tính nhanh (1-1/1+2)*(1-1/1+2+3)*…*(1- 1/1+2+3+..+2020)

tính nhanh
(1-1/1+2)*(1-1/1+2+3)*…*(1- 1/1+2+3+..+2020)

0 bình luận về “tính nhanh (1-1/1+2)*(1-1/1+2+3)*…*(1- 1/1+2+3+..+2020)”

  1. Đáp án: $A=\dfrac{337}{1010}$

    Giải thích các bước giải:

    Ta có:

    $I_n=1-\dfrac{1}{1+2+3+…+n}$

    $\to I_n=\dfrac{1+2+3+…+n-1}{1+2+3+…+n}$

    $\to I_n=\dfrac{2+3+…+n}{1+2+3+…+n}$

    $\to I_n=\dfrac{\dfrac{\left(n-1\right)\left(n+2\right)}{2}}{\dfrac{n\left(n+1\right)}{2}}$

    $\to I_n=\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}$

    Khi đó 

    $A=\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)….\left(1-\dfrac{1}{1+2+3+…+2020}\right)$

    $\to A=\dfrac{\left(2-1\right)\left(2+2\right)}{2\left(2+1\right)}\cdot \dfrac{\left(3-1\right)\left(3+2\right)}{3\left(3+1\right)}….\dfrac{\left(2020-1\right)\left(2020+2\right)}{2020\left(2020+1\right)}$

    $\to A=\dfrac{1\cdot 4}{2\cdot 3}\cdot \dfrac{2\cdot 5}{3\cdot 4}….\dfrac{2019\cdot 2022}{2020\cdot 2021}$

    $\to A=\dfrac{1.2…2019}{2.3…2020}\cdot \dfrac{4.5…2022}{3.4…2021}$

    $\to A=\dfrac{1}{2020}\cdot \dfrac{2022}{3}$

    $\to A=\dfrac{337}{1010}$

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    ( 1 – $\frac{1}{1 + 2}$ ) . ( 1 – $\frac{1}{1 + 2 + 3 }$ ) . ( 1 – $\frac{1}{1 + 2 + 3 + … + 2020}$ )

    ⇒ ( 1 – $\frac{1}{3}$ ) . ( 1 – $\frac{1}{6}$ ) . ( 1 – $\frac{1}{(1+2020).2020 : 2 }$ 

    ⇒ $\frac{2}{3}$ . $\frac{5}{6}$ …$\frac{2021.2020:2-1}{2021.2020:2}$ 

    ⇒$\frac{4}{6}$ . $\frac{10}{12}$ …. $\frac{(2021.2020:2-1).2}{2021.2020}$ 

    ⇒$\frac{1.4}{2.3}$ . $\frac{2.5}{3.4}$ ….$\frac{2019.2022}{2020.2021}$ 

    ⇒$\frac{1.2.3.4….2019}{3.4.5…2020}$ . $\frac{4.5.6…2022}{3.4.5..2021}$ 

    ⇒$\frac{2}{2020}$ . $\frac{2022}{3}$ = $\frac{4044}{6060}$ = 

    Bình luận

Viết một bình luận