Tính nhanh tổng `A=1/2+1/4+1/8+1/16+1/32+1/64+1/128`

Tính nhanh tổng `A=1/2+1/4+1/8+1/16+1/32+1/64+1/128`

0 bình luận về “Tính nhanh tổng `A=1/2+1/4+1/8+1/16+1/32+1/64+1/128`”

  1. $A$=$\frac{1}{2}$ +$\frac{1}{4}$ +$\frac{1}{8}$ +$\frac{1}{16}$ +$\frac{1}{32}$+$\frac{1}{64}$+ $\frac{1}{128}$ 

     $2A$=1+$\frac{1}{2}$ +$\frac{1}{4}$ +$\frac{1}{8}$ +$\frac{1}{16}$ +$\frac{1}{32}$+$\frac{1}{64}$

    ⇒$2A-A$=(1+$\frac{1}{2}$ +$\frac{1}{4}$ +$\frac{1}{8}$ +$\frac{1}{16}$ +$\frac{1}{32}$+$\frac{1}{64}$)-($\frac{1}{2}$ +$\frac{1}{4}$ +$\frac{1}{8}$ +$\frac{1}{16}$ +$\frac{1}{32}$+$\frac{1}{64}$+ $\frac{1}{128}$)

    ⇒$A$=1-$\frac{1}{128}$= $\frac{127}{128}$ 

     

    Bình luận
  2. A = $\frac{1}{2}$ + $\frac{1}{4}$ +$\frac{1}{8}$ + $\frac{1}{18}$ +$\frac{1}{32}$ + $\frac{1}{64}$ + $\frac{1}{128}$ 

    A = $\frac{1}{2^{1}}$  + $\frac{1}{2^{2}}$  +$\frac{1}{2^{3}}$  + $\frac{1}{2^{4}}$ + $\frac{1}{2^{5}}$ + $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$

    2A = 2.( $\frac{1}{2^{1}}$  + $\frac{1}{2^{2}}$  +$\frac{1}{2^{3}}$  + $\frac{1}{2^{4}}$ + $\frac{1}{2^{5}}$ + $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$ )

    2A = 1 + $\frac{1}{2^{1}}$  + $\frac{1}{2^{2}}$  +$\frac{1}{2^{3}}$  + $\frac{1}{2^{4}}$ + $\frac{1}{2^{5}}$ + $\frac{1}{2^{6}}$ 

    2A – A =  ( 1 + $\frac{1}{2^{1}}$  + $\frac{1}{2^{2}}$  +$\frac{1}{2^{3}}$  + $\frac{1}{2^{4}}$ + $\frac{1}{2^{5}}$ + $\frac{1}{2^{6}}$ ) – ( $\frac{1}{2^{1}}$  + $\frac{1}{2^{2}}$  +$\frac{1}{2^{3}}$  + $\frac{1}{2^{4}}$ + $\frac{1}{2^{5}}$ + $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$)

    ⇒ A = 1 – $\frac{1}{2^{7}}$

            = 1 – $\frac{1}{128}$ 

             = $\frac{127}{128}$ 

    @Min

    Bình luận

Viết một bình luận