Tính tích phân trên đoạn [0;2pi] của căn (1+sin x) dx 21/10/2021 Bởi Emery Tính tích phân trên đoạn [0;2pi] của căn (1+sin x) dx
Đáp án: $4\sqrt2$ Giải thích các bước giải: $\quad I = \displaystyle\int\limits_0^{2\pi}\sqrt{1 + \sin x}dx$ $\to I = \displaystyle\int\limits_0^{2\pi}\sqrt{1 + \cos\left(\dfrac{\pi}{2} – x\right)}dx$ $\to I = \displaystyle\int\limits_0^{2\pi}\sqrt2.\sqrt{\cos^2\left(\dfrac{\pi}{4}-\dfrac x2\right)}dx$ $\to I = \sqrt2\displaystyle\int\limits_0^{2\pi}\left|\cos\left(\dfrac{\pi}{4}-\dfrac x2\right)\right|dx$ Đặt $u = \dfrac{\pi}{4}-\dfrac x2$ $\to du =-\dfrac12dx$ Ta được: $\quad I = -2\sqrt2\displaystyle\int\limits_{\tfrac{\pi}{4}}^{-\tfrac{3\pi}{4}}\left|\cos u\right|du$ $\to I = 2\sqrt2\displaystyle\int\limits^{\tfrac{\pi}{4}}_{-\tfrac{3\pi}{4}}\left|\cos u\right|du$ $\to I = 2\sqrt2\displaystyle\int\limits^{\tfrac{\pi}{2}}_{-\tfrac{\pi}{2}}\left|\cos u\right|du$ $\to I = 2\sqrt2\displaystyle\int\limits^{\tfrac{\pi}{2}}_{-\tfrac{\pi}{2}}\cos udu$ $\to I = 2\sqrt2\sin u\Bigg|^{\tfrac{\pi}{2}}_{-\tfrac{\pi}{2}}$ $\to I = 4\sqrt2$ Bình luận
Đáp án:
$4\sqrt2$
Giải thích các bước giải:
$\quad I = \displaystyle\int\limits_0^{2\pi}\sqrt{1 + \sin x}dx$
$\to I = \displaystyle\int\limits_0^{2\pi}\sqrt{1 + \cos\left(\dfrac{\pi}{2} – x\right)}dx$
$\to I = \displaystyle\int\limits_0^{2\pi}\sqrt2.\sqrt{\cos^2\left(\dfrac{\pi}{4}-\dfrac x2\right)}dx$
$\to I = \sqrt2\displaystyle\int\limits_0^{2\pi}\left|\cos\left(\dfrac{\pi}{4}-\dfrac x2\right)\right|dx$
Đặt $u = \dfrac{\pi}{4}-\dfrac x2$
$\to du =-\dfrac12dx$
Ta được:
$\quad I = -2\sqrt2\displaystyle\int\limits_{\tfrac{\pi}{4}}^{-\tfrac{3\pi}{4}}\left|\cos u\right|du$
$\to I = 2\sqrt2\displaystyle\int\limits^{\tfrac{\pi}{4}}_{-\tfrac{3\pi}{4}}\left|\cos u\right|du$
$\to I = 2\sqrt2\displaystyle\int\limits^{\tfrac{\pi}{2}}_{-\tfrac{\pi}{2}}\left|\cos u\right|du$
$\to I = 2\sqrt2\displaystyle\int\limits^{\tfrac{\pi}{2}}_{-\tfrac{\pi}{2}}\cos udu$
$\to I = 2\sqrt2\sin u\Bigg|^{\tfrac{\pi}{2}}_{-\tfrac{\pi}{2}}$
$\to I = 4\sqrt2$