Tính tổng : 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + …. + 2^20 19/07/2021 Bởi Aaliyah Tính tổng : 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + …. + 2^20
Đặt A=2^1+2^2+2^3+…..+2^20 Ta có: A=2^1+2^2+2^3+…+2^20 =>2A=2(2^1+2^2+2^3+…+2^20)=2^2+2^3+2^4+…+2^21 =>A=2A-A=(2^2+2^3+2^4+…+2^21)-(2^1+2^2+2^3+…+2^20) =>A=2^21-2 Bình luận
Gọi A = `2^1` + `2^2` + `2^3` + `2^4` + `2^5` + …. + `2^20` 2A = `2^2` + `2^3` + `2^4` + `2^5` + …. + `2^21` 2A – A = (`2^2` + `2^3` + `2^4` + `2^5` + …. + `2^21`) – (`2^1` + `2^2` + `2^3` + `2^4` + `2^5` + …. + `2^20`) A = `2^21` – `2^1` A = `2^21` – 2 XIN HAY NHẤT NHA Bình luận
Đặt A=2^1+2^2+2^3+…..+2^20
Ta có: A=2^1+2^2+2^3+…+2^20
=>2A=2(2^1+2^2+2^3+…+2^20)=2^2+2^3+2^4+…+2^21
=>A=2A-A=(2^2+2^3+2^4+…+2^21)-(2^1+2^2+2^3+…+2^20)
=>A=2^21-2
Gọi A = `2^1` + `2^2` + `2^3` + `2^4` + `2^5` + …. + `2^20`
2A = `2^2` + `2^3` + `2^4` + `2^5` + …. + `2^21`
2A – A = (`2^2` + `2^3` + `2^4` + `2^5` + …. + `2^21`) – (`2^1` + `2^2` + `2^3` + `2^4` + `2^5` + …. + `2^20`)
A = `2^21` – `2^1`
A = `2^21` – 2
XIN HAY NHẤT NHA