Tính tổng dãy số S= 2×4 +4×6+ … +1998×2000? 06/08/2021 Bởi Allison Tính tổng dãy số S= 2×4 +4×6+ … +1998×2000?
Ta có $S = 2\times 4 + 4 \times 6 + \cdots + 1998 \times 2000$ $= 2 \times 1 \times 2 \times 2 + 2 \times 2 \times 3 \times 2 + \cdots + 2 \times 999 \times 1000 \times 2$ $= 4(1 \times 2 + 2 \times 3 + \cdots + 999 \times 1000)$ Đặt $A = 1 \times 2 + 2 \times 3 + \cdots + 999 \times 1000$ Nhân $3$ vào 2 vế ta có $3A = 1 \times 2 \times 3 + 2 \times 3 \times 3 + \cdots + 999 \times 1000 \times 3$ $= 1 \times 2 \times 3 + 2 \times 3 \times (4-1) + 3 \times 4 \times (5-2) + \cdots + 999 \times 1000 \times (1001 – 998)$ $= (1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + \cdots + 999 \times 1000 \times 1001) – (1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + \cdots + 998 \times 999 \times 1000)$ $= 999 \times 1000 \times 1001$ Suy ra $A = 333 \times 1000 \times 1001$ Vậy ta có $S = 4A = 333 \times 4000 \times 1001$ Bình luận
Ta có: S = 2×4+4×6+⋯+1998×2000S=2×4+4×6+⋯+1998×2000 = 2 × 1 × 2 × 2 + 2 × 2 × 3 × 2 +⋯+ 2 × 999 × 1000 × 2 = 2 × 1 × 2 × 2 + 2 × 2 × 3 × 2 +⋯+ 2 × 999 × 1000 × 2 = 4 (1 × 2 + 2 × 3 +⋯+ 999 × 1000) = 4(1 × 2 + 2 × 3 +⋯+ 999 × 1000) A = 1 × 2 + 2 × 3 +⋯+ 999 × 1000 Nhân 3 vào 2 vế ta có: A = 1 × 2 × 3 + 2 × 3 × 3 +⋯+ 999 × 1000 × 3 = 1 × 2 × 3 + 2 × 3 × (4 − 1) + 3 × 4 × (5 − 2) + ⋯+ 999 × 1000 × (1001 − 998) = 1 × 2 × 3 + 2 × 3 × (4 − 1) + 3 × 4 × (5 – 2) +⋯+ 999 × 1000 × (1001 − 998) = (1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +⋯+ 999 × 1000 × 1001) − (1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +⋯+ 998 × 999 × 1000) = (1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +⋯+ 999 × 1000 × 1001) − (1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +⋯+ 998 × 999 × 1000) = 999 × 1000 × 1001 = 999 × 1000 × 1001 Suy ra: A = 333 × 1000 × 1001 Vậy ta có: S = 4 -////- Bình luận
Ta có
$S = 2\times 4 + 4 \times 6 + \cdots + 1998 \times 2000$
$= 2 \times 1 \times 2 \times 2 + 2 \times 2 \times 3 \times 2 + \cdots + 2 \times 999 \times 1000 \times 2$
$= 4(1 \times 2 + 2 \times 3 + \cdots + 999 \times 1000)$
Đặt
$A = 1 \times 2 + 2 \times 3 + \cdots + 999 \times 1000$
Nhân $3$ vào 2 vế ta có
$3A = 1 \times 2 \times 3 + 2 \times 3 \times 3 + \cdots + 999 \times 1000 \times 3$
$= 1 \times 2 \times 3 + 2 \times 3 \times (4-1) + 3 \times 4 \times (5-2) + \cdots + 999 \times 1000 \times (1001 – 998)$
$= (1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + \cdots + 999 \times 1000 \times 1001) – (1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + \cdots + 998 \times 999 \times 1000)$
$= 999 \times 1000 \times 1001$
Suy ra
$A = 333 \times 1000 \times 1001$
Vậy ta có
$S = 4A = 333 \times 4000 \times 1001$
Ta có:
S = 2×4+4×6+⋯+1998×2000S=2×4+4×6+⋯+1998×2000
= 2 × 1 × 2 × 2 + 2 × 2 × 3 × 2 +⋯+ 2 × 999 × 1000 × 2 = 2 × 1 × 2 × 2 + 2 × 2 × 3 × 2 +⋯+ 2 × 999 × 1000 × 2
= 4 (1 × 2 + 2 × 3 +⋯+ 999 × 1000) = 4(1 × 2 + 2 × 3 +⋯+ 999 × 1000)
A = 1 × 2 + 2 × 3 +⋯+ 999 × 1000
Nhân 3 vào 2 vế ta có:
A = 1 × 2 × 3 + 2 × 3 × 3 +⋯+ 999 × 1000 × 3
= 1 × 2 × 3 + 2 × 3 × (4 − 1) + 3 × 4 × (5 − 2) +
⋯+ 999 × 1000 × (1001 − 998) = 1 × 2 × 3 + 2 × 3 × (4 − 1) + 3 × 4 × (5 – 2) +⋯+ 999 × 1000 × (1001 − 998)
= (1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +⋯+ 999 × 1000 × 1001) − (1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +⋯+ 998 × 999 × 1000) = (1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +⋯+ 999 × 1000 × 1001) − (1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 +⋯+ 998 × 999 × 1000)
= 999 × 1000 × 1001 = 999 × 1000 × 1001
Suy ra:
A = 333 × 1000 × 1001
Vậy ta có:
S = 4
-////-