Tính tổng sau : $\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+…+\frac{2014}{4^{2014}}$

Tính tổng sau : $\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+…+\frac{2014}{4^{2014}}$

0 bình luận về “Tính tổng sau : $\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+…+\frac{2014}{4^{2014}}$”

  1. Giải thích các bước giải:

     Ta có:

    \(\begin{array}{l}
    A = \frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + … + \frac{{2014}}{{{4^{2014}}}}\\
     \Rightarrow 4A = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + …. + \frac{{2014}}{{{4^{2013}}}}\\
     \Rightarrow 4A – A = \left( {1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + …. + \frac{{2014}}{{{4^{2013}}}}} \right) – \left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + … + \frac{{2014}}{{{4^{2014}}}}} \right)\\
     \Leftrightarrow 3A = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + …. + \frac{1}{{{4^{2013}}}} – \frac{{2014}}{{{4^{2014}}}}\\
    B = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + …. + \frac{1}{{{4^{2013}}}}\\
     \Rightarrow 4B = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + …. + \frac{1}{{{4^{2012}}}}\\
     \Rightarrow 4B – B = \left( {4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + …. + \frac{1}{{{4^{2012}}}}} \right) – \left( {1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + …. + \frac{1}{{{4^{2013}}}}} \right)\\
     \Leftrightarrow 3B = 4 – \frac{1}{{{4^{2013}}}} \Rightarrow B = \frac{4}{3} – \frac{1}{{{{3.4}^{2013}}}}\\
    3A = B – \frac{{2014}}{{{4^{2014}}}} = \frac{4}{3} – \left( {\frac{1}{{{{3.4}^{2013}}}} + \frac{{2014}}{{{4^{2014}}}}} \right) \Rightarrow A = ….
    \end{array}\)

    Bình luận

Viết một bình luận