Trên cùng một nửa mặt phẳng bờ chứa tia Ox vẽ các tia Oy , Oz sao cho xooy = 45 độ , xOz = 120 độ
a, Tính số đo góc yOz
b, Gọi Ot là tia phân giác của góc xOz . Tính góc xOt
c, Gọi Om là tia đối của tia Ox . Hỏi tia Oz có là tia phân giác của tOm không? Vì sao?
Đáp án:
a) Trên nửa mp bờ Ox có góc xOy < góc xOz
=> tia Oy nằm giữa 2 tia Ox và Oz
=> góc yOz = góc xOz – góc xOy = 120 độ – 45 độ = 75 độ
b)
Ot là tia phân giác của góc xOz nên:
$\widehat {xOt} = \widehat {zOt} = \dfrac{{\widehat {xOz}}}{2} = \dfrac{{{{120}^0}}}{2} = {60^0}$
c)
Om là tia đối của tia Ox nên ta có:
$\begin{array}{l}
+ )\widehat {xOz} + \widehat {zOm} = \widehat {xOm}\\
\Rightarrow {120^0} + \widehat {zOm} = {180^0}\\
\Rightarrow \widehat {zOm} = {60^0}\\
+ \widehat {xOt} + \widehat {tOm} = \widehat {xOm}\\
\Rightarrow {60^0} + \widehat {tOm} = {180^0}\\
\Rightarrow \widehat {tOm} = {120^0}\\
\Rightarrow \widehat {zOm} = \dfrac{1}{2}\widehat {tOm}\left( {do:{{60}^0} = \dfrac{1}{2}{{.120}^0}} \right)
\end{array}$
Và tia Oz nằm giữa Om và Ot
=> Oz là tia phân giác của góc tOm.
`a,` Trên cùng một nửa mp bờ chứa tia `Ox` có góc `xOy<xOz`
`=>Oy` nằm giữa `Ox,Oz`
`=>` Góc `xOy+yOz=xOz`
`=>` Góc `yOz=120^0-45^0=75^0`
`b,` Vì `Ot` là tia phân giác của `xOz` nên:
`=>` Góc `xOt=tOz=xOz=(120^0)/2=60^0`
`c,` Ta có: `mOz=mOx-zOx=180^0-120^0=60^0`
`=>mOz=zOt=60^0`
`=>Oz` là tia phân giác của `mOt`