trong khong gian oxyz cho duong thang d : (x-1)/-1 =(y+2)/1=z/2 va hai diem a(0,1,1) b( -5 0 5 ) diem m thuoc d thoa man ma binh + mb binh nho nhat gi

trong khong gian oxyz cho duong thang d : (x-1)/-1 =(y+2)/1=z/2 va hai diem a(0,1,1) b( -5 0 5 ) diem m thuoc d thoa man ma binh + mb binh nho nhat gia tri nho nhat

0 bình luận về “trong khong gian oxyz cho duong thang d : (x-1)/-1 =(y+2)/1=z/2 va hai diem a(0,1,1) b( -5 0 5 ) diem m thuoc d thoa man ma binh + mb binh nho nhat gi”

  1. Đáp án:

    $M\left(-\dfrac32;\dfrac12;1\right)$

    Giải thích các bước giải:

    Gọi $I$ là trung điểm $AB$

    $\Rightarrow \begin{cases}\overrightarrow{IA} + \overrightarrow{IB}= \overrightarrow{0}\\I\left(-\dfrac52;\dfrac12;3\right)\end{cases}$

    Ta có:

    $(d):\dfrac{x-1}{-1}=\dfrac{y+2}{1}=\dfrac{z}{2}$

    $\Leftrightarrow (d):\begin{cases}x = 1 – t\\y = – 2 + t\\z = 2t\end{cases}\quad (t\in\Bbb R)$

    Gọi $M(1-t;-2+t;2t)\in (d)$

    $\Rightarrow \overrightarrow{MI}=\left(-\dfrac72 + t;\dfrac52 – t; 3 – 2t\right)$

    Ta được:

    $\quad MA^2 + MB^2$

    $= \left(\overrightarrow{MI} + \overrightarrow{IA}\right)^2 + \left(\overrightarrow{MI} + \overrightarrow{IB}\right)^2$

    $= 2MI^2 + 2\overrightarrow{MI}\left(\overrightarrow{IA} + \overrightarrow{IB}\right) + IA^2 + IB^2$

    $= 2MI^2 + IA^2 + IB^2$

    Do $I, \ A,\ B$ cố định

    nên $MA^2 + MB^2$ nhỏ nhất

    $\Leftrightarrow MI^2$ nhỏ nhất

    Ta có:

    $\quad MI^2 = \left(-\dfrac72 + t\right)^2 + \left(\dfrac52 – t\right)^2 + (3 – 2t)^2$

    $\Leftrightarrow MI^2 = 6t^2 – 24t +\dfrac{55}{2}$

    $\Leftrightarrow MI^2 = 6(t-2)^2 +\dfrac72$

    $\Rightarrow MI^2 \geqslant \dfrac72 \Leftrightarrow t = 2$

    $\Rightarrow M\left(-\dfrac32;\dfrac12;1\right)$

    Vậy $M\left(-\dfrac32;\dfrac12;1\right)$

    Bình luận

Viết một bình luận