(vẽ hình)
Cho tam giác nhọn ABC; có đường cao AH. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia AE vuông góc với AC và AE = AC. Trên nửa mặt phẳng bờ Ab chứa điểm C vẽ tia AF vuông góc với AB và AF = AB.
a) C/M : EB = FC
b) Gọi giao điểm của EF với AH là N. C/M : N là trung điểm của EF.
Đáp án:
ta có:AE vuông góc với AC ;AB vuông góc với AF
suy ra: góc AEC=90độ;góc BAF=90đ
mà góc BAC+góc EAB= góc AEC=90đ
góc BAC+góc CAF=góc BAF=90đ
suy ra: góc EAB=góc CAF
xét tam giác AEBvà ACF có:
AE=AC
AB=AF
góc EAB= góc ACF (cmt)
suy ra tam giác AEB=ACF ( C.G.C)
suy ra EB= CF ( cạnh tương ứng)
Giải thích các bước giải: