Z=(X+2/√X+1 – √x ):(√x – 4/ 1-x – √x/ √x +1

Z=(X+2/√X+1 – √x ):(√x – 4/ 1-x – √x/ √x +1

0 bình luận về “Z=(X+2/√X+1 – √x ):(√x – 4/ 1-x – √x/ √x +1”

  1. $$\eqalign{
    & \left( {{{x + 2} \over {\sqrt x + 1}} – \sqrt x } \right):\left( {{{\sqrt x – 4} \over {1 – x}} – {{\sqrt x } \over {\sqrt x + 1}}} \right) \cr
    & = {{x + 2 – x – \sqrt x } \over {\sqrt x + 1}}:{{\sqrt x – 4 – \sqrt x \left( {1 – \sqrt x } \right)} \over {\left( {1 – \sqrt x } \right)\left( {1 + \sqrt x } \right)}} \cr
    & = {{2 – \sqrt x } \over {\sqrt x + 1}}:{{\sqrt x – 4 – \sqrt x + x} \over {\left( {1 – \sqrt x } \right)\left( {1 + \sqrt x } \right)}} \cr
    & = {{2 – \sqrt x } \over {\sqrt x + 1}}.{{\left( {1 – \sqrt x } \right)\left( {1 + \sqrt x } \right)} \over {x – 4}} \cr
    & = {{2 – \sqrt x } \over {\sqrt x + 1}}.{{\left( {1 – \sqrt x } \right)\left( {1 + \sqrt x } \right)} \over {\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}} \cr
    & = {{\sqrt x – 1} \over {\sqrt x + 2}} \cr} $$

    Bình luận
  2. \[\begin{array}{l}
    Z = \left( {\frac{{x + 2}}{{\sqrt x + 1}} – \sqrt x } \right):\left( {\frac{{\sqrt x – 4}}{{1 – x}} – \frac{{\sqrt x }}{{\sqrt x + 1}}} \right)\,\,\,\left( {DK:\,\,x \ge 0;\,\,x \ne 1} \right)\\
    = \frac{{x + 2 – x – \sqrt x }}{{\sqrt x + 1}}:\frac{{\sqrt x – 4 – \sqrt x \left( {1 – \sqrt x } \right)}}{{\left( {1 – \sqrt x } \right)\left( {1 + \sqrt x } \right)}}\\
    = \frac{{2 – \sqrt x }}{{\sqrt x + 1}}:\frac{{\sqrt x – 4 – \sqrt x + x}}{{\left( {1 – \sqrt x } \right)\left( {1 + \sqrt x } \right)}}\\
    = \frac{{2 – \sqrt x }}{{\sqrt x + 1}}:\frac{{x – 4}}{{\left( {1 – \sqrt x } \right)\left( {1 + \sqrt x } \right)}}\\
    = \frac{{2 – \sqrt x }}{{\sqrt x + 1}}.\frac{{\left( {1 – \sqrt x } \right)\left( {1 + \sqrt x } \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\
    = \frac{{1 – \sqrt x }}{{ – \left( {\sqrt x + 2} \right)}} = \frac{{\sqrt x – 1}}{{\sqrt x + 2}}.
    \end{array}\]

    Bình luận

Viết một bình luận