(1 -1 /x+1)*(1 -1 /x+2)*(1 -1 /x+3)*…*(1 -1 /x+2019) 03/12/2021 Bởi Sarah (1 -1 /x+1)*(1 -1 /x+2)*(1 -1 /x+3)*…*(1 -1 /x+2019)
`(1 -1 /(x+1))*(1 -1 /(x+2))*(1 -1 /(x+3))*…*(1 -1 /(x+2019))` `=(x+1 -1) /(x+1)*(x+2 -1) /(x+2)*(x+3 -1) /(x+3)*…*(x+2019-1) /(x+2019)` `=(x) /(x+1)*(x+1) /(x+2)*(x+2) /(x+3)*…*(x+2018) /(x+2019)` `=x/(x+2019)` Bình luận
Đáp án : `A=x/(x+2019)` Giải thích các bước giải : `A=(1-1/(x+1))(1-1/(x+2))(1-1/(x+3))…(1-1/(x+2019))` `<=>A=((x+1)/(x+1)-1/(x+1))((x+2)/(x+2)-1/(x+2))…((x+2019)/(x+2019)-1/(x+2019))` `<=>A=(x+1-1)/(x+1).(x+2-1)/(x+2)…(x+2019-1)/(x+2019)` `<=>A=x/(x+1).(x+1)/(x+2)…(x+2018)/(x+2019)` `<=>A=[x(x+1)(x+2)…(x+2018)]/[(x+1)(x+2)(x+3)…(x+2019)]` `<=>A=x/(x+2019)` Vậy `A=x/(x+2019)` ~Chúc bạn học tốt !!!~ Bình luận
`(1 -1 /(x+1))*(1 -1 /(x+2))*(1 -1 /(x+3))*…*(1 -1 /(x+2019))`
`=(x+1 -1) /(x+1)*(x+2 -1) /(x+2)*(x+3 -1) /(x+3)*…*(x+2019-1) /(x+2019)`
`=(x) /(x+1)*(x+1) /(x+2)*(x+2) /(x+3)*…*(x+2018) /(x+2019)`
`=x/(x+2019)`
Đáp án :
`A=x/(x+2019)`
Giải thích các bước giải :
`A=(1-1/(x+1))(1-1/(x+2))(1-1/(x+3))…(1-1/(x+2019))`
`<=>A=((x+1)/(x+1)-1/(x+1))((x+2)/(x+2)-1/(x+2))…((x+2019)/(x+2019)-1/(x+2019))`
`<=>A=(x+1-1)/(x+1).(x+2-1)/(x+2)…(x+2019-1)/(x+2019)`
`<=>A=x/(x+1).(x+1)/(x+2)…(x+2018)/(x+2019)`
`<=>A=[x(x+1)(x+2)…(x+2018)]/[(x+1)(x+2)(x+3)…(x+2019)]`
`<=>A=x/(x+2019)`
Vậy `A=x/(x+2019)`
~Chúc bạn học tốt !!!~