1/(1+1)+2/(1+2)+ 3/(1+3)+…+2019/(1+2019)= 24/07/2021 Bởi Josephine 1/(1+1)+2/(1+2)+ 3/(1+3)+…+2019/(1+2019)=
Ta có $A=\dfrac{1}{2} + \dfrac{2}{3} + \cdots + \dfrac{2019}{2020} = \left( 1 – \dfrac{1}{2} \right) + \left( 1 – \dfrac{1}{3} \right) + \cdots + \left( 1 – \dfrac{1}{2020} \right)$ $= \underbrace{1 + \cdots + 1}_{2019 \, \text{số 1}} – \left( \dfrac{1}{2} + \dfrac{1}{3} + \cdots + \dfrac{1}{2020} \right)$ $= 2019 – \left( \dfrac{1}{2} + \dfrac{1}{3} + \cdots + \dfrac{1}{2020} \right)$ Ta sẽ tính $S = \dfrac{1}{2} + \dfrac{1}{3} + \cdots + \dfrac{1}{2020}$ Bình luận
Ta có
$A=\dfrac{1}{2} + \dfrac{2}{3} + \cdots + \dfrac{2019}{2020} = \left( 1 – \dfrac{1}{2} \right) + \left( 1 – \dfrac{1}{3} \right) + \cdots + \left( 1 – \dfrac{1}{2020} \right)$
$= \underbrace{1 + \cdots + 1}_{2019 \, \text{số 1}} – \left( \dfrac{1}{2} + \dfrac{1}{3} + \cdots + \dfrac{1}{2020} \right)$
$= 2019 – \left( \dfrac{1}{2} + \dfrac{1}{3} + \cdots + \dfrac{1}{2020} \right)$
Ta sẽ tính
$S = \dfrac{1}{2} + \dfrac{1}{3} + \cdots + \dfrac{1}{2020}$