1/1.2.3 + 1/2.3.4 + 1/3.4.5 +……+ 1/A.(A+1)(A+2)

1/1.2.3 + 1/2.3.4 + 1/3.4.5 +……+ 1/A.(A+1)(A+2)

0 bình luận về “1/1.2.3 + 1/2.3.4 + 1/3.4.5 +……+ 1/A.(A+1)(A+2)”

  1. Đáp án:

    $A=\dfrac{1}{2}(\dfrac{1}{1.2}-\dfrac{1}{(a+1)(a+2)})$

    Giải thích các bước giải:

    $A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+…+\dfrac{1}{a(a+1)(a+2)}\\ \text{ta có:} \\ \dfrac{1}{n.(n+1)(n+2)}=\dfrac{n+2-n}{2n(n+1)(n+2)}=\dfrac{1}{2}(\dfrac{1}{n.(n+1)}-\dfrac{1}{(n+1)(n+2)})\\ \rightarrow A=\dfrac{1}{2}(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+…+\dfrac{1}{a.(a+1)}-\dfrac{1}{(a+1)(a+2)})\\ \rightarrow A=\dfrac{1}{2}(\dfrac{1}{1.2}-\dfrac{1}{(a+1)(a+2)})$

    Bình luận

Viết một bình luận