1.(x+1).(x+2).(x+3).(x+4)=120 2. 3/2x-16+3x-20/x-8+1/8=13x-102/3x-24 25/11/2021 Bởi Maya 1.(x+1).(x+2).(x+3).(x+4)=120 2. 3/2x-16+3x-20/x-8+1/8=13x-102/3x-24
Đáp án: $1) {\left[\begin{aligned}x=1\\x=-6\end{aligned}\right.}$ $2) x=12$ Giải thích các bước giải: $1)(x+1).(x+2).(x+3).(x+4)=120\\\Leftrightarrow \left [(x+1)(x+4) \right ]\left [ (x+2)(x+3) \right ]=120\\\Leftrightarrow (x^2+4x+x+4)(x^2+3x+2x+6)=120\\\Leftrightarrow (x^2+5x+4)(x^2+5x+6)=120$Đặt $x^2+5x+4=t$$\Rightarrow t.(t+2)=120\\\Leftrightarrow t^2+2t-120=0\\\Leftrightarrow t^2+12t-10t-120=0\\\Leftrightarrow t(t+12)-10(t+12)=0\\\Leftrightarrow (t-10)(t+12)=0\\\Leftrightarrow {\left[\begin{aligned}t=10\\t=-12\end{aligned}\right.}\\\Rightarrow {\left[\begin{aligned}x^2+5x+4=10\\ x^2+5x+4=-12\end{aligned}\right.}\\\Leftrightarrow {\left[\begin{aligned}x^2+5x-6=0\\ x^2+5x+16=0\end{aligned}\right.}\\+) x^2+5x-6=0\\\Leftrightarrow x^2-x+6x-6=0\\\Leftrightarrow x(x-1)+6(x-1)=0\\\Leftrightarrow (x-1)(x+6)=0\\\Leftrightarrow {\left[\begin{aligned}x=1\\x=-6\end{aligned}\right.}\\+) x^2+5x+16=0\\\Leftrightarrow \left (x^2+5x+\frac{25}{4} \right )+\frac{39}{4}=0\\\Leftrightarrow (x+\frac{5}{2})^2+\frac{39}{4}=0$Vì $(x+\frac{5}{2})^2>0\Rightarrow (x+\frac{5}{2})^2+\frac{39}{4}>0$Do đó phương trình vô nghiệm $2) \frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3x-24}\\ĐK: x-8\neq 0\Leftrightarrow x\neq 0\\\Rightarrow \frac{3.12}{24(x-8)}+\frac{24(3x-20)}{24(x-8)}+\frac{3(x-8)}{24(x-8)}=\frac{8(13x-102)}{24(x-8)}\\\Leftrightarrow 36+72x-480+3x-24=104x-816\\\Leftrightarrow 75x-104x=-816+468\\\Leftrightarrow -29x=-348\\\Leftrightarrow x=12$ Bình luận
Đáp án:
$1) {\left[\begin{aligned}x=1\\x=-6\end{aligned}\right.}$
$2) x=12$
Giải thích các bước giải:
$1)(x+1).(x+2).(x+3).(x+4)=120\\
\Leftrightarrow \left [(x+1)(x+4) \right ]\left [ (x+2)(x+3) \right ]=120\\
\Leftrightarrow (x^2+4x+x+4)(x^2+3x+2x+6)=120\\
\Leftrightarrow (x^2+5x+4)(x^2+5x+6)=120$
Đặt $x^2+5x+4=t$
$\Rightarrow t.(t+2)=120\\
\Leftrightarrow t^2+2t-120=0\\
\Leftrightarrow t^2+12t-10t-120=0\\
\Leftrightarrow t(t+12)-10(t+12)=0\\
\Leftrightarrow (t-10)(t+12)=0\\
\Leftrightarrow {\left[\begin{aligned}t=10\\t=-12\end{aligned}\right.}\\
\Rightarrow {\left[\begin{aligned}x^2+5x+4=10\\ x^2+5x+4=-12\end{aligned}\right.}\\
\Leftrightarrow {\left[\begin{aligned}x^2+5x-6=0\\ x^2+5x+16=0\end{aligned}\right.}\\
+) x^2+5x-6=0\\
\Leftrightarrow x^2-x+6x-6=0\\
\Leftrightarrow x(x-1)+6(x-1)=0\\
\Leftrightarrow (x-1)(x+6)=0\\
\Leftrightarrow {\left[\begin{aligned}x=1\\x=-6\end{aligned}\right.}\\
+) x^2+5x+16=0\\
\Leftrightarrow \left (x^2+5x+\frac{25}{4} \right )+\frac{39}{4}=0\\
\Leftrightarrow (x+\frac{5}{2})^2+\frac{39}{4}=0$
Vì $(x+\frac{5}{2})^2>0\Rightarrow (x+\frac{5}{2})^2+\frac{39}{4}>0$
Do đó phương trình vô nghiệm
$2) \frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3x-24}\\
ĐK: x-8\neq 0\Leftrightarrow x\neq 0\\
\Rightarrow \frac{3.12}{24(x-8)}+\frac{24(3x-20)}{24(x-8)}+\frac{3(x-8)}{24(x-8)}=\frac{8(13x-102)}{24(x-8)}\\
\Leftrightarrow 36+72x-480+3x-24=104x-816\\
\Leftrightarrow 75x-104x=-816+468\\
\Leftrightarrow -29x=-348\\
\Leftrightarrow x=12$