1) -x^2 – 1
2) -(x + 1)^2
3) -(x + 1)^2 – 3
4) -x^2 – 2x – 1
5) -x^2 – 2x – 4
6) -x^2 – 4x – 1
7) -x^2 – x – 1
8) -2x^2 + 6x – 8
9) -2x^2 – 3x – 4
10) -2x^2 + 2x – 4
1) -x^2 – 1
2) -(x + 1)^2
3) -(x + 1)^2 – 3
4) -x^2 – 2x – 1
5) -x^2 – 2x – 4
6) -x^2 – 4x – 1
7) -x^2 – x – 1
8) -2x^2 + 6x – 8
9) -2x^2 – 3x – 4
10) -2x^2 + 2x – 4
Đáp án:
$ 1) -x^2-1$
Vì $-x^2 ≤ 0 $
Nên $ -x^2-1 < 0 ∀ x$
$2) -(x+1)^2$
Vì $(x+1)^2 ≥ 0 ∀ x$
Nên $-(x+1)^2 ≤ ∀ x$
$3) -(x+1)^2 – 3$
Vì $-(x+1)^2 ≤ 0 ∀ x$
Nên $-(x+1)^2 -3 < 0∀x$
$4) -x^2-2x-1$
$ = -(x^2+2x+1)$
$ = -(x+1)^2$
Vì $(x+1)^2 ≥ 0 ∀ x$
Nên $-(x+1)^2 ≤ 0 ∀ x$
$5) -x^2-2x-4$
$ = -(x^2+2x+4)$
$=-(x^2 +2.x.1+ 1+3)$
$ = -(x+1)^2 -3$
Vì $-(x+1)^2 ≤ 0 ∀ x$
Nên $ -(x+1)^2 -3 < 0 ∀ x$
6) sai đề ko chứng minh đc
$7) -x^2-x-1$
$ = -(x^2+x+1)$
$ = -(x^2 +2.x.\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4})$
$ = -(x+\dfrac{1}{2})^2 – \dfrac{3}{4}$
Vì $ -(x+\dfrac{1}{2})^2 ≤ 0 ∀ x$
Nên $ -(x+\dfrac{1}{2})^2 -\dfrac{3}{4} < 0 ∀ x$
$8) -2x^2+6x-8$
$ = -(2x^2-6x+8)$
$ = -[(√2x)^2- 2 . √2x. \dfrac{3\sqrt[]{2}}{2} + \dfrac{9}{2} + \dfrac{7}{2}]$
$ = -(√2x -\dfrac{3\sqrt[]{2}}{2})^2 – \dfrac{7}{2}$
Vì $ -(√2x -\dfrac{3\sqrt[]{2}}{2})^2 ≤ 0 ∀ x$
Nên $ -(√2x- \dfrac{3\sqrt[]{2}}{2})^2 – \dfrac{7}{2}$ < 0 ∀ x$
$9) -2x^2 -3x -4$
$ = -(2x^2 +3x +4)$
$ = -[(√2x)^2 + 2 . √2x . \dfrac{3\sqrt[]{2}}{4}+ \dfrac{9}{8} + \dfrac{23}{8}]$
$ = -(√2x +\dfrac{3\sqrt[]{2}}{4})^2 -\dfrac{23}{8}$
Vì $ -(√2x +\dfrac{3\sqrt[]{2}}{4})^2 ≤ 0 ∀ x$
Nên $ -(√2x +\dfrac{3\sqrt[]{2}}{4})^2 – \dfrac{23}{8} < 0 ∀ x$
$10) -2x^2 + 2x – 4$
$ = -(2x^2-2x+4)$
$ = -[(√2x)^2 – 2 . √2x . \dfrac{\sqrt[]{2}}{2} + \dfrac{1}{4} + \dfrac{15}{4}]$
$ = -(√2x -\dfrac{\sqrt[]{2}}{2})^2 – \dfrac{15}{4}$
Vì $ -(√2x -\dfrac{\sqrt[]{2}}{2})^2 ≤ 0 ∀ x$
Nên $ -(√2x -\dfrac{\sqrt[]{2}}{2})^2 – \dfrac{15}{4} < 0 ∀ x $