(x-1)(x^2+x+1) – x(x+2)(x-2)=5 (x-3)^3 – (x-3)(x^2+3x+9) + 9(x+1)^2= 15 x(x-5)(x+5) – (x-2)(x^2+2x+4) = 3

(x-1)(x^2+x+1) – x(x+2)(x-2)=5
(x-3)^3 – (x-3)(x^2+3x+9) + 9(x+1)^2= 15
x(x-5)(x+5) – (x-2)(x^2+2x+4) = 3

0 bình luận về “(x-1)(x^2+x+1) – x(x+2)(x-2)=5 (x-3)^3 – (x-3)(x^2+3x+9) + 9(x+1)^2= 15 x(x-5)(x+5) – (x-2)(x^2+2x+4) = 3”

  1. `a,(x-1)(x^2+x+1)-x(x+2)(x-2)=5`

    `⇔x^3-1-x(x^2-4)=5`

    `⇔x^3-1-x^3+4x=5`

    `⇔4x=6`

    `⇔x=3/2`

    `b,(x-3)^3-(x-3)(x^2+3x+9)+9(x+1)^2=15`

    `⇔x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15`

    `⇔x^3-9x^2+27x-27-x^3+27+9x^2+18x+9=15`

    `⇔45x=6`

    `⇔x=2/15`

    `c,x(x-5)(x+5)-(x-2)(x^2+2x+4)=3`

    `⇔x(x^2-25)-x^3+8=3`

    `⇔x^3-25x-x^3+8=3`

    `⇔-25x=-5`

    `⇔x=1/5`

    Bình luận

Viết một bình luận