Giải thích các bước giải: Ta có: \(\begin{array}{l}1,\\{\left( {2x – 1} \right)^2} + {\left( {4{x^2} – 1} \right)^2} = 0\\\left. \begin{array}{l}{\left( {2x – 1} \right)^2} \ge 0,\,\,\,\,\forall x\\{\left( {4{x^2} – 1} \right)^2} \ge 0,\,\,\,\forall x\end{array} \right\} \Rightarrow {\left( {2x – 1} \right)^2} + {\left( {4{x^2} – 1} \right)^2} \ge 0,\,\,\,\forall x\\ \Rightarrow \left\{ \begin{array}{l}{\left( {2x – 1} \right)^2} = 0\\{\left( {4{x^2} – 1} \right)^2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x – 1 = 0\\4{x^2} – 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{2}\\{x^2} = \frac{1}{4}\end{array} \right. \Leftrightarrow x = \frac{1}{2}\\2,\\{x^3} + 3{x^2} + 3x = 7\\ \Leftrightarrow {x^3} + 3{x^2} + 3x – 7 = 0\\ \Leftrightarrow \left( {{x^3} – {x^2}} \right) + \left( {4{x^2} – 4x} \right) + \left( {7x – 7} \right) = 0\\ \Leftrightarrow {x^2}\left( {x – 1} \right) + 4x\left( {x – 1} \right) + 7\left( {x – 1} \right) = 0\\ \Leftrightarrow \left( {x – 1} \right)\left( {{x^2} + 4x + 7} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x – 1 = 0\\{x^2} + 4x + 7 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\\left( {{x^2} + 4x + 4} \right) + 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\{\left( {x + 2} \right)^2} + 3 = 0\,\,\,\,\,\,\,\,\,\,\,\left( {vn} \right)\end{array} \right.\\ \Leftrightarrow x = 1\end{array}\) Bình luận
Đáp án:
Giải thích các bước giải:
Bn giỏi nhường mik ctlhn nha
Cảm ơn
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
1,\\
{\left( {2x – 1} \right)^2} + {\left( {4{x^2} – 1} \right)^2} = 0\\
\left. \begin{array}{l}
{\left( {2x – 1} \right)^2} \ge 0,\,\,\,\,\forall x\\
{\left( {4{x^2} – 1} \right)^2} \ge 0,\,\,\,\forall x
\end{array} \right\} \Rightarrow {\left( {2x – 1} \right)^2} + {\left( {4{x^2} – 1} \right)^2} \ge 0,\,\,\,\forall x\\
\Rightarrow \left\{ \begin{array}{l}
{\left( {2x – 1} \right)^2} = 0\\
{\left( {4{x^2} – 1} \right)^2} = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2x – 1 = 0\\
4{x^2} – 1 = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{1}{2}\\
{x^2} = \frac{1}{4}
\end{array} \right. \Leftrightarrow x = \frac{1}{2}\\
2,\\
{x^3} + 3{x^2} + 3x = 7\\
\Leftrightarrow {x^3} + 3{x^2} + 3x – 7 = 0\\
\Leftrightarrow \left( {{x^3} – {x^2}} \right) + \left( {4{x^2} – 4x} \right) + \left( {7x – 7} \right) = 0\\
\Leftrightarrow {x^2}\left( {x – 1} \right) + 4x\left( {x – 1} \right) + 7\left( {x – 1} \right) = 0\\
\Leftrightarrow \left( {x – 1} \right)\left( {{x^2} + 4x + 7} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x – 1 = 0\\
{x^2} + 4x + 7 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
\left( {{x^2} + 4x + 4} \right) + 3 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
{\left( {x + 2} \right)^2} + 3 = 0\,\,\,\,\,\,\,\,\,\,\,\left( {vn} \right)
\end{array} \right.\\
\Leftrightarrow x = 1
\end{array}\)