(1/2+1/3+1/4+…+1/2012+1/2013).x=2012/1+2011/2+2010/3+…+2/2011+1/2012

(1/2+1/3+1/4+…+1/2012+1/2013).x=2012/1+2011/2+2010/3+…+2/2011+1/2012

0 bình luận về “(1/2+1/3+1/4+…+1/2012+1/2013).x=2012/1+2011/2+2010/3+…+2/2011+1/2012”

  1. Đáp án:

    `↓↓` 

    Giải thích các bước giải:

    `(1/2+1/3+1/4+…+1/2012+1/2013).x=2012/1+2011/2+2010/3+…+2/2011+1/2012`

    `=> x=( 2012/1+2011/2+2010/3+…+2/2011+1/2012 ):(1/2+1/3+1/4+…+1/2012+1/2013)`

    Gọi `A=( 2012/1+2011/2+2010/3+…+2/2011+1/2012 ):(1/2+1/3+1/4+…+1/2012+1/2013)`

    `A=(2012/1+2011/2+2010/3+…+2/2011+1/2012)/(1/2+1/3+1/4+…+1/2012+1/2013)`

    `=(2012/1+1+2011/2+1+2010/3+1+…+2/2011+1+1/2012+1)/(1/2+1/3+1/4+…+1/2012+1/2013)`

    `=(1+2013/2+2013/3+….+2013/2012)/(1/2+1/3+1/4+…+1/2012+1/2013)`

    `=(2013.(1/2+1/3+….+1/2012+1/2013))/(1/2+1/3+1/4+…+1/2012+1/2013)`

    `=2013`

    `=> x=2013`

    Bình luận

Viết một bình luận