1/2-1/3+|x|=x+1/6 |1/5-2x|.|1/3-4x|=0 |x|+2x-1/3=-5/6 |x-1/3|+(x-1/4)+1/2=x -3/7-|3/7+x|=1/10 19/07/2021 Bởi Serenity 1/2-1/3+|x|=x+1/6 |1/5-2x|.|1/3-4x|=0 |x|+2x-1/3=-5/6 |x-1/3|+(x-1/4)+1/2=x -3/7-|3/7+x|=1/10
+, $\frac{1}{2}$ – $\frac{1}{3}$ + |x| = x + $\frac{1}{6}$ ⇔ $\frac{1}{6}$ – |x| = x + $\frac{1}{6}$ ⇔ |x| = -x (vô lí) Vì |x| ≥ 0 ⇒ Phương trình vô nghiệm +, |$\frac{1}{5}$ – 2x| . |$\frac{1}{3}$ – 4x| = 0 ⇔ \(\left[ \begin{array}{l}|\frac{1}{5}-2x|=0\\|\frac{1}{3}-4x|=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}\frac{1}{5}-2x=0\\\frac{1}{3}-4x=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}2x=\frac{1}{5}\\4x=\frac{1}{3}\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=\frac{1}{10}\\x=\frac{1}{12}\end{array} \right.\) Vậy x = $\frac{1}{10}$ hoặc $\frac{1}{12}$ +, |x| + 2x – $\frac{1}{3}$ = -$\frac{5}{6}$ ⇔ |x| = -$\frac{1}{2}$ – 2x ⇔ \(\left[ \begin{array}{l}x=-\frac{1}{2}-2x\\x=\frac{1}{2}+2x\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}3x=-\frac{1}{2}\\-x=\frac{1}{2}\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=-\frac{1}{6}\\x=-\frac{1}{2}\end{array} \right.\) Vậy ……… +, |x – $\frac{1}{3}$| + (x – $\frac{1}{4}$) + $\frac{1}{2}$ = x ⇔ |x – $\frac{1}{3}$| = -$\frac{1}{4}$ ⇔ \(\left[ \begin{array}{l}x-\frac{1}{3}=\frac{1}{4}\\x-\frac{1}{3}=-\frac{1}{4}\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=\frac{7}{12}\\x=\frac{1}{12}\end{array} \right.\) Vậy ………. +, -$\frac{3}{7}$ – |$\frac{3}{7}$ + x| = $\frac{1}{10}$ ⇔ |$\frac{3}{7}$ + x| = -$\frac{37}{70}$ Vì |$\frac{3}{7}$ + x| ≥ 0 ⇒ |$\frac{3}{7}$ + x| = -$\frac{37}{70}$ (vô lí) ⇒ Phương trình vô nghiệm Bình luận
+, $\frac{1}{2}$ – $\frac{1}{3}$ + |x| = x + $\frac{1}{6}$
⇔ $\frac{1}{6}$ – |x| = x + $\frac{1}{6}$
⇔ |x| = -x (vô lí)
Vì |x| ≥ 0
⇒ Phương trình vô nghiệm
+, |$\frac{1}{5}$ – 2x| . |$\frac{1}{3}$ – 4x| = 0
⇔ \(\left[ \begin{array}{l}|\frac{1}{5}-2x|=0\\|\frac{1}{3}-4x|=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}\frac{1}{5}-2x=0\\\frac{1}{3}-4x=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}2x=\frac{1}{5}\\4x=\frac{1}{3}\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=\frac{1}{10}\\x=\frac{1}{12}\end{array} \right.\)
Vậy x = $\frac{1}{10}$ hoặc $\frac{1}{12}$
+, |x| + 2x – $\frac{1}{3}$ = -$\frac{5}{6}$
⇔ |x| = -$\frac{1}{2}$ – 2x
⇔ \(\left[ \begin{array}{l}x=-\frac{1}{2}-2x\\x=\frac{1}{2}+2x\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}3x=-\frac{1}{2}\\-x=\frac{1}{2}\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=-\frac{1}{6}\\x=-\frac{1}{2}\end{array} \right.\)
Vậy ………
+, |x – $\frac{1}{3}$| + (x – $\frac{1}{4}$) + $\frac{1}{2}$ = x
⇔ |x – $\frac{1}{3}$| = -$\frac{1}{4}$
⇔ \(\left[ \begin{array}{l}x-\frac{1}{3}=\frac{1}{4}\\x-\frac{1}{3}=-\frac{1}{4}\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=\frac{7}{12}\\x=\frac{1}{12}\end{array} \right.\)
Vậy ……….
+, -$\frac{3}{7}$ – |$\frac{3}{7}$ + x| = $\frac{1}{10}$
⇔ |$\frac{3}{7}$ + x| = -$\frac{37}{70}$
Vì |$\frac{3}{7}$ + x| ≥ 0 ⇒ |$\frac{3}{7}$ + x| = -$\frac{37}{70}$ (vô lí)
⇒ Phương trình vô nghiệm