`(x-1)/2+(x-1)/3+(x-1)/6=2` `⇒[3.(x-1)+2.(x-1)+(x-1)]/6=2` `⇒[3.(x-1)+2.(x-1)+(x-1)]/6=12/6` `⇒3.(x-1)+2.(x-1)+(x-1)=12` `⇒3.x-3.1+2.x-2.1+x-1=12` `⇒3x-3+2x-2+x-1=12` `⇒(3x+2x+x)-(3+2+1)=12` `⇒6x-6=12` `⇒6(x-1)=12` `⇒x-1=12÷6` `⇒x-1=2` `⇒x=2+1` `⇒x=3` Bình luận
`(x-1)/2+(x-1)/3+(x-1)/6=2` `⇔(3(x-1)+2(x-1)+(x-1))/6=12/6` `⇔3x-3+2x-2-x+1=12` `⇔6x=12` `⇔x=3` Vậy `x=3` Bình luận
`(x-1)/2+(x-1)/3+(x-1)/6=2`
`⇒[3.(x-1)+2.(x-1)+(x-1)]/6=2`
`⇒[3.(x-1)+2.(x-1)+(x-1)]/6=12/6`
`⇒3.(x-1)+2.(x-1)+(x-1)=12`
`⇒3.x-3.1+2.x-2.1+x-1=12`
`⇒3x-3+2x-2+x-1=12`
`⇒(3x+2x+x)-(3+2+1)=12`
`⇒6x-6=12`
`⇒6(x-1)=12`
`⇒x-1=12÷6`
`⇒x-1=2`
`⇒x=2+1`
`⇒x=3`
`(x-1)/2+(x-1)/3+(x-1)/6=2`
`⇔(3(x-1)+2(x-1)+(x-1))/6=12/6`
`⇔3x-3+2x-2-x+1=12`
`⇔6x=12`
`⇔x=3`
Vậy `x=3`