(1 + 2 + 3 + … + 2009 + 2010) x (20202020 2021 – 20212021 2020) 07/07/2021 Bởi Mackenzie (1 + 2 + 3 + … + 2009 + 2010) x (20202020 2021 – 20212021 2020)
Đáp án + Giải thích các bước giải: `(1+2+3+…+2010)xx(20202020xx2021-20212021xx2020)` `=(1+2+3+…+2010)xx(2020xx10001xx2021-2020xx10001xx2021)` `=(1+2+3+…+2010)xx0` `=0` Bình luận
`(1 + 2 + 3 + … + 2009 + 2010) × (20202020×2021 – 20212021×2020)` `=(1 + 2 + 3 + … + 2009 + 2010) × (2020×10001×2021 – 2021×10001×2020)` `=(1 + 2 + 3 + … + 2009 + 2010) × 0` `= 0` Bình luận
Đáp án + Giải thích các bước giải:
`(1+2+3+…+2010)xx(20202020xx2021-20212021xx2020)`
`=(1+2+3+…+2010)xx(2020xx10001xx2021-2020xx10001xx2021)`
`=(1+2+3+…+2010)xx0`
`=0`
`(1 + 2 + 3 + … + 2009 + 2010) × (20202020×2021 – 20212021×2020)`
`=(1 + 2 + 3 + … + 2009 + 2010) × (2020×10001×2021 – 2021×10001×2020)`
`=(1 + 2 + 3 + … + 2009 + 2010) × 0`
`= 0`