1/2-/5/4-2x/=1/3 2x-/x+1/=-1/2 /2x-1/-/x+1/3/=0 19/07/2021 Bởi Ayla 1/2-/5/4-2x/=1/3 2x-/x+1/=-1/2 /2x-1/-/x+1/3/=0
Giải thích các bước giải: Ta có: \(\begin{array}{l}a,\\\dfrac{1}{2} – \left| {\dfrac{5}{4} – 2x} \right| = \dfrac{1}{3}\\ \Leftrightarrow \left| {\dfrac{5}{4} – 2x} \right| = \dfrac{1}{2} – \dfrac{1}{3}\\ \Leftrightarrow \left| {\dfrac{5}{4} – 2x} \right| = \dfrac{1}{6}\\ \Leftrightarrow \left[ \begin{array}{l}\dfrac{5}{4} – 2x = \dfrac{1}{6}\\\dfrac{5}{4} – 2x = – \dfrac{1}{6}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = \dfrac{5}{4} – \dfrac{1}{6}\\2x = \dfrac{5}{4} + \dfrac{1}{6}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = \dfrac{{13}}{{12}}\\2x = \dfrac{{17}}{{12}}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{13}}{{24}}\\x = \dfrac{{17}}{{24}}\end{array} \right.\\b,\\2x – \left| {x + 1} \right| = – \dfrac{1}{2}\\ \Leftrightarrow \left| {x + 1} \right| = 2x + \dfrac{1}{2}\\ \Leftrightarrow \left\{ \begin{array}{l}2x + \dfrac{1}{2} \ge 0\\\left[ \begin{array}{l}x + 1 = 2x + \dfrac{1}{2}\\x + 1 = – 2x – \dfrac{1}{2}\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge – \dfrac{1}{4}\\\left[ \begin{array}{l}x = \dfrac{1}{2}\\x = – \dfrac{1}{2}\end{array} \right.\end{array} \right. \Leftrightarrow x = \dfrac{1}{2}\\c,\\\left| {2x – 1} \right| – \left| {x + \dfrac{1}{3}} \right| = 0\\ \Leftrightarrow \left| {2x – 1} \right| = \left| {x + \dfrac{1}{3}} \right|\\ \Leftrightarrow \left[ \begin{array}{l}2x – 1 = x + \dfrac{1}{3}\\2x – 1 = – x – \dfrac{1}{3}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{4}{3}\\x = \dfrac{2}{9}\end{array} \right.\end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
\dfrac{1}{2} – \left| {\dfrac{5}{4} – 2x} \right| = \dfrac{1}{3}\\
\Leftrightarrow \left| {\dfrac{5}{4} – 2x} \right| = \dfrac{1}{2} – \dfrac{1}{3}\\
\Leftrightarrow \left| {\dfrac{5}{4} – 2x} \right| = \dfrac{1}{6}\\
\Leftrightarrow \left[ \begin{array}{l}
\dfrac{5}{4} – 2x = \dfrac{1}{6}\\
\dfrac{5}{4} – 2x = – \dfrac{1}{6}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
2x = \dfrac{5}{4} – \dfrac{1}{6}\\
2x = \dfrac{5}{4} + \dfrac{1}{6}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
2x = \dfrac{{13}}{{12}}\\
2x = \dfrac{{17}}{{12}}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{13}}{{24}}\\
x = \dfrac{{17}}{{24}}
\end{array} \right.\\
b,\\
2x – \left| {x + 1} \right| = – \dfrac{1}{2}\\
\Leftrightarrow \left| {x + 1} \right| = 2x + \dfrac{1}{2}\\
\Leftrightarrow \left\{ \begin{array}{l}
2x + \dfrac{1}{2} \ge 0\\
\left[ \begin{array}{l}
x + 1 = 2x + \dfrac{1}{2}\\
x + 1 = – 2x – \dfrac{1}{2}
\end{array} \right.
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge – \dfrac{1}{4}\\
\left[ \begin{array}{l}
x = \dfrac{1}{2}\\
x = – \dfrac{1}{2}
\end{array} \right.
\end{array} \right. \Leftrightarrow x = \dfrac{1}{2}\\
c,\\
\left| {2x – 1} \right| – \left| {x + \dfrac{1}{3}} \right| = 0\\
\Leftrightarrow \left| {2x – 1} \right| = \left| {x + \dfrac{1}{3}} \right|\\
\Leftrightarrow \left[ \begin{array}{l}
2x – 1 = x + \dfrac{1}{3}\\
2x – 1 = – x – \dfrac{1}{3}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{4}{3}\\
x = \dfrac{2}{9}
\end{array} \right.
\end{array}\)