1 + 2/6 + 2/ 12+…+ 2/x .(x + 1) = 1989/1991 27/10/2021 Bởi Clara 1 + 2/6 + 2/ 12+…+ 2/x .(x + 1) = 1989/1991
Đáp án: Giải thích các bước giải: $1+\frac{2}{6} + \frac{2}{12} + \frac{2}{20} + … + \frac{2}{x(x+1)}= \frac{1989}{1991}$ $⇒ 2. ( \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + … + \frac{1}{x(x+1)}) = \frac{1989}{1991} – 1 $ $⇒ \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + … + \frac{1}{x( x+1) } = \frac{\frac{1989}{1991}-1 }{2} $ $⇒ \frac{1}{2} – \frac{1}{3} + \frac{1}{3} – \frac{1}{4} + \frac{1}{4} – \frac{1}{5} + … + \frac{1}{x} – \frac{1}{x+1} = \frac{-1}{1991} $ $⇒ \frac{1}{2} – \frac{1}{x+1} = \frac{-1}{1991} $ $⇒ \frac{1}{x+1} = \frac{1}{2} – ( \frac{-1}{1991} ) $ $⇒ \frac{1}{x+1} = \frac{1993}{3982} $ $⇒ x + 1 = \frac{3982}{1993} $ $⇒ x = \frac{3982}{1993} – 1 $ $⇒ x = \frac{1989}{1993} $ $ \text{ Vậy } x = \frac{1989}{1993} $ Bình luận
Đáp án: Giải thích các bước giải: $1+\dfrac{2}{6}+\dfrac{2}{12}+…+\dfrac{2}{x.(x+1)}=\dfrac{1989}{1991}$ $ $ $⇒2.(\dfrac{1}{2.3}+\dfrac{1}{3.4}+…+\dfrac{1}{x.(x+1)})=\dfrac{-2}{1991}$ $ $ $⇒2.(\dfrac{1}{2}-\dfrac{1}{x+1})=\dfrac{-2}{1991}$ $ $ $⇒\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{-1}{1991}$ $ $ $⇒\dfrac{1}{x+1}=\dfrac{1993}{3982}$ $ $ $⇒\dfrac{1993}{1993x+1993}=\dfrac{1993}{3982}$ $ $ $⇒1993x+1993=3982$ $⇒1993x=1989$ $⇒x=\dfrac{1989}{1993}$ Bình luận
Đáp án:
Giải thích các bước giải:
$1+\frac{2}{6} + \frac{2}{12} + \frac{2}{20} + … + \frac{2}{x(x+1)}= \frac{1989}{1991}$
$⇒ 2. ( \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + … + \frac{1}{x(x+1)}) = \frac{1989}{1991} – 1 $
$⇒ \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + … + \frac{1}{x( x+1) } = \frac{\frac{1989}{1991}-1 }{2} $
$⇒ \frac{1}{2} – \frac{1}{3} + \frac{1}{3} – \frac{1}{4} + \frac{1}{4} – \frac{1}{5} + … + \frac{1}{x} – \frac{1}{x+1} = \frac{-1}{1991} $
$⇒ \frac{1}{2} – \frac{1}{x+1} = \frac{-1}{1991} $
$⇒ \frac{1}{x+1} = \frac{1}{2} – ( \frac{-1}{1991} ) $
$⇒ \frac{1}{x+1} = \frac{1993}{3982} $
$⇒ x + 1 = \frac{3982}{1993} $
$⇒ x = \frac{3982}{1993} – 1 $
$⇒ x = \frac{1989}{1993} $
$ \text{ Vậy } x = \frac{1989}{1993} $
Đáp án:
Giải thích các bước giải:
$1+\dfrac{2}{6}+\dfrac{2}{12}+…+\dfrac{2}{x.(x+1)}=\dfrac{1989}{1991}$
$ $
$⇒2.(\dfrac{1}{2.3}+\dfrac{1}{3.4}+…+\dfrac{1}{x.(x+1)})=\dfrac{-2}{1991}$
$ $
$⇒2.(\dfrac{1}{2}-\dfrac{1}{x+1})=\dfrac{-2}{1991}$
$ $
$⇒\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{-1}{1991}$
$ $
$⇒\dfrac{1}{x+1}=\dfrac{1993}{3982}$
$ $
$⇒\dfrac{1993}{1993x+1993}=\dfrac{1993}{3982}$
$ $
$⇒1993x+1993=3982$
$⇒1993x=1989$
$⇒x=\dfrac{1989}{1993}$