1 + 2/6 + 2/ 12+…+ 2/x .(x + 1) = 1989/1991

1 + 2/6 + 2/ 12+…+ 2/x .(x + 1) = 1989/1991

0 bình luận về “1 + 2/6 + 2/ 12+…+ 2/x .(x + 1) = 1989/1991”

  1. Đáp án:

     

    Giải thích các bước giải:

    $1+\frac{2}{6} + \frac{2}{12} + \frac{2}{20} + … + \frac{2}{x(x+1)}= \frac{1989}{1991}$ 

    $⇒ 2. ( \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + … + \frac{1}{x(x+1)}) = \frac{1989}{1991} – 1 $ 

    $⇒ \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + … + \frac{1}{x( x+1) } = \frac{\frac{1989}{1991}-1 }{2} $

    $⇒ \frac{1}{2} – \frac{1}{3} + \frac{1}{3} – \frac{1}{4} + \frac{1}{4} – \frac{1}{5} + … + \frac{1}{x} – \frac{1}{x+1} = \frac{-1}{1991} $ 

    $⇒ \frac{1}{2} – \frac{1}{x+1} = \frac{-1}{1991} $ 

    $⇒ \frac{1}{x+1} = \frac{1}{2} – ( \frac{-1}{1991} ) $ 

    $⇒ \frac{1}{x+1} = \frac{1993}{3982} $ 

    $⇒ x + 1 = \frac{3982}{1993} $ 

    $⇒ x = \frac{3982}{1993} – 1 $ 

    $⇒ x = \frac{1989}{1993} $ 

    $ \text{ Vậy } x = \frac{1989}{1993} $                    

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

     $1+\dfrac{2}{6}+\dfrac{2}{12}+…+\dfrac{2}{x.(x+1)}=\dfrac{1989}{1991}$

    $ $

    $⇒2.(\dfrac{1}{2.3}+\dfrac{1}{3.4}+…+\dfrac{1}{x.(x+1)})=\dfrac{-2}{1991}$

    $ $

    $⇒2.(\dfrac{1}{2}-\dfrac{1}{x+1})=\dfrac{-2}{1991}$

    $ $ 

    $⇒\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{-1}{1991}$

    $ $

    $⇒\dfrac{1}{x+1}=\dfrac{1993}{3982}$

    $ $

    $⇒\dfrac{1993}{1993x+1993}=\dfrac{1993}{3982}$

    $ $

    $⇒1993x+1993=3982$

    $⇒1993x=1989$

    $⇒x=\dfrac{1989}{1993}$

    Bình luận

Viết một bình luận