(x+1/2013) + (x+2/2012) + (x+3/2011) = (x+4/2010) + (x+5/2009) + (x+6/2008) help me!!! 01/10/2021 Bởi Faith (x+1/2013) + (x+2/2012) + (x+3/2011) = (x+4/2010) + (x+5/2009) + (x+6/2008) help me!!!
`(x+1)/2013 + (x+2)/2012 + (x+3)/2011 = (x+4)/2010 + (x+5)/2009 + (x+6)/2008` `⇒ (x+1)/2013 + (x+2)/2012 + (x+3)/2011 – (x+4)/2010 – (x+5)/2009 – (x+6)/2008 = 0` `⇒ ((x+1)/2013 + 1) + ((x+2)/2012 + 1) + ((x+3)/2011 + 1) – ((x+4)/2010 + 1) – ((x+5)/2009 + 1) – ((x+6)/2008 + 1) = 0` `⇒ (x+2014)/2013 + (x+2014)/2012 + (x+2014)/2011 – (x+2014)/2010 – (x+2014)/2009 – (x+2014)/2008 = 0` `⇒ (x + 2014). (1/2013 + 1/2021 + 1/2011 – 1/2010 – 1/2009 – 1/2008) = 0` Mà `(1/2013 + 1/2021 + 1/2011 – 1/2010 – 1/2009 – 1/2008) \ne 0` `⇒ x + 2014 = 0` `⇒ x = -2014` Bình luận
Đáp án: `(x+1)/2013+(x+2)/2012+(x+3)/2011=(x+4)/2010+(x+5)/2009+(x+6)/2008` `<=> (x+1)/2013 +1 +(x+2)/2012 +1 +(x+3)/2011 +1 =(x+4)/2010 +1 +(x+5)/2009 +1 +(x+6)/2008 +1 ` `<=> (x+2014)/2013+(x+2014)/2012+(x+2014)/2011=(x+2014)/2010+(x+2014)/2009+(x+2014)/2008` `<=> (x+2014)/2013+(x+2014)/2012+(x+2014)/2011-(x+2014)/2010-(x+2014)/2009-(x+2014)/2008=0` `<=> (x+2014).(1/2013+1/2012+1/2011-1/2010-1/2009-1/2008)=0` Mà `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0` `=> x+2014=0` `<=> x=-2014` Vậy `x=-2014` Bình luận
`(x+1)/2013 + (x+2)/2012 + (x+3)/2011 = (x+4)/2010 + (x+5)/2009 + (x+6)/2008`
`⇒ (x+1)/2013 + (x+2)/2012 + (x+3)/2011 – (x+4)/2010 – (x+5)/2009 – (x+6)/2008 = 0`
`⇒ ((x+1)/2013 + 1) + ((x+2)/2012 + 1) + ((x+3)/2011 + 1) – ((x+4)/2010 + 1) – ((x+5)/2009 + 1) – ((x+6)/2008 + 1) = 0`
`⇒ (x+2014)/2013 + (x+2014)/2012 + (x+2014)/2011 – (x+2014)/2010 – (x+2014)/2009 – (x+2014)/2008 = 0`
`⇒ (x + 2014). (1/2013 + 1/2021 + 1/2011 – 1/2010 – 1/2009 – 1/2008) = 0`
Mà `(1/2013 + 1/2021 + 1/2011 – 1/2010 – 1/2009 – 1/2008) \ne 0`
`⇒ x + 2014 = 0`
`⇒ x = -2014`
Đáp án:
`(x+1)/2013+(x+2)/2012+(x+3)/2011=(x+4)/2010+(x+5)/2009+(x+6)/2008`
`<=> (x+1)/2013 +1 +(x+2)/2012 +1 +(x+3)/2011 +1 =(x+4)/2010 +1 +(x+5)/2009 +1 +(x+6)/2008 +1 `
`<=> (x+2014)/2013+(x+2014)/2012+(x+2014)/2011=(x+2014)/2010+(x+2014)/2009+(x+2014)/2008`
`<=> (x+2014)/2013+(x+2014)/2012+(x+2014)/2011-(x+2014)/2010-(x+2014)/2009-(x+2014)/2008=0`
`<=> (x+2014).(1/2013+1/2012+1/2011-1/2010-1/2009-1/2008)=0`
Mà `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`
`=> x+2014=0`
`<=> x=-2014`
Vậy `x=-2014`