|x|+|x+1|=2020 tìm x x+1/9+ x+1/8= x+1/7+ x+1/6 24/07/2021 Bởi Remi |x|+|x+1|=2020 tìm x x+1/9+ x+1/8= x+1/7+ x+1/6
Đáp án: $\begin{array}{l}a)\\\left| x \right| + \left| {x + 1} \right| = 2020\\ + Khi:x \ge 0 \Rightarrow \left\{ \begin{array}{l}\left| x \right| = x\\\left| {x + 1} \right| = x + 1\end{array} \right.\\ \Rightarrow x + x + 1 = 2020\\ \Rightarrow 2x = 2019\\ \Rightarrow x = \dfrac{{2019}}{2}\left( {tmdk} \right)\\ + Khi: – 1 \le x < 0 \Rightarrow \left\{ \begin{array}{l}\left| x \right| = – x\\\left| {x + 1} \right| = x + 1\end{array} \right.\\ \Rightarrow – x + x + 1 = 2020\\ \Rightarrow 1 = 2020\left( {vn} \right)\\ + Khi:x < – 1 \Rightarrow \left\{ \begin{array}{l}\left| x \right| = – x\\\left| {x + 1} \right| = – x – 1\end{array} \right.\\ \Rightarrow – x – x – 1 = 2020\\ \Rightarrow 2x = – 2021\\ \Rightarrow x = – \dfrac{{2021}}{2}\left( {tmdk} \right)\\Vay\,x = \dfrac{{2019}}{2}\,hoac\,x = \dfrac{{ – 2021}}{2}\\b)\\\dfrac{{x + 1}}{9} + \dfrac{{x + 1}}{8} = \dfrac{{x + 1}}{7} = \dfrac{{x + 1}}{6}\\ \Rightarrow \left( {x + 1} \right).\left( {\dfrac{1}{9} + \dfrac{1}{8} – \dfrac{1}{7} – \dfrac{1}{6}} \right) = 0\\ \Rightarrow x + 1 = 0\\ \Rightarrow x = – 1\\Vay\,x = – 1\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)\\
\left| x \right| + \left| {x + 1} \right| = 2020\\
+ Khi:x \ge 0 \Rightarrow \left\{ \begin{array}{l}
\left| x \right| = x\\
\left| {x + 1} \right| = x + 1
\end{array} \right.\\
\Rightarrow x + x + 1 = 2020\\
\Rightarrow 2x = 2019\\
\Rightarrow x = \dfrac{{2019}}{2}\left( {tmdk} \right)\\
+ Khi: – 1 \le x < 0 \Rightarrow \left\{ \begin{array}{l}
\left| x \right| = – x\\
\left| {x + 1} \right| = x + 1
\end{array} \right.\\
\Rightarrow – x + x + 1 = 2020\\
\Rightarrow 1 = 2020\left( {vn} \right)\\
+ Khi:x < – 1 \Rightarrow \left\{ \begin{array}{l}
\left| x \right| = – x\\
\left| {x + 1} \right| = – x – 1
\end{array} \right.\\
\Rightarrow – x – x – 1 = 2020\\
\Rightarrow 2x = – 2021\\
\Rightarrow x = – \dfrac{{2021}}{2}\left( {tmdk} \right)\\
Vay\,x = \dfrac{{2019}}{2}\,hoac\,x = \dfrac{{ – 2021}}{2}\\
b)\\
\dfrac{{x + 1}}{9} + \dfrac{{x + 1}}{8} = \dfrac{{x + 1}}{7} = \dfrac{{x + 1}}{6}\\
\Rightarrow \left( {x + 1} \right).\left( {\dfrac{1}{9} + \dfrac{1}{8} – \dfrac{1}{7} – \dfrac{1}{6}} \right) = 0\\
\Rightarrow x + 1 = 0\\
\Rightarrow x = – 1\\
Vay\,x = – 1
\end{array}$