1) (x-3)(5x+12)=0 2) (2x+1)(2-3x)=0 3) 2x^2+5x=0 4) (x-2019)(x+2020)=0 Giúp ạ cần gấp 26/09/2021 Bởi aihong 1) (x-3)(5x+12)=0 2) (2x+1)(2-3x)=0 3) 2x^2+5x=0 4) (x-2019)(x+2020)=0 Giúp ạ cần gấp
$\text{Đáp án + Giải thích các bước giải:}$ `1//(x-3)(5x+12)=0` `⇔` \(\left[ \begin{array}{l}x-3=0\\5x+12=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=3\\5x=-12\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=3\\x=-\dfrac{12}{5}\end{array} \right.\) `\text{Vậy}` `S={3;-(12)/(5)}` `2//(2x+1)(2-3x)=0` `⇔` \(\left[ \begin{array}{l}2x+1=0\\2-3x=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}2x=-1\\3x=2\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=-\dfrac{1}{2}\\x=\dfrac{2}{3} \end{array} \right.\) `\text{Vậy}` `S={-(1)/(2);(2)/(3)}` `3//2x^{2}+5x=0` `<=>x(2x+5)=0` `⇔` \(\left[ \begin{array}{l}x=0\\2x+5=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=0\\x=-\dfrac{5}{2}\end{array} \right.\) `\text{Vậy}` `S={0;-(5)/(2)}` `4//(x-2019)(x+2020)=0` `<=>` \(\left[ \begin{array}{l}x-2019=0\\x+2020=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=2019\\x=-2020\end{array} \right.\) `\text{Vậy}` `S={2019;-2020}` Bình luận
Giải thích các bước giải: `1) (x-3)(5x+12)=0`TH`1``x-3=0``=>x=0+3``=>x=3`TH`2``5x+12=0``=>5x=0-12``=>5x=-12``=>x=-12:5``=>x=-12/5`Vậy `x\in{3;-12/5}``2) (2x+1)(2-3x)=0`TH`1``2x+1=0``=>2x=0-1``=>2x=-1``=>x=-1:2``=>x=-1/2`TH`2``2-3x=0``=>3x=2-0``=>3x=2``=>x=2:3``=>x=2/3`Vậy `x\in{-1/2;2/3}``3) 2x^2+5x=0``=>x(2x+5)=0`TH`1``x=0`TH`2``2x+5=0``=>2x=0-5``=>2x=-5``=>x=-5:2``=>x=-5/2`Vậy `x\in{0;-5/2}``4) (x-2019)(x+2020)=0`TH`1``x-2019=0``=>x=0+2019``=>x=2019`TH`2``x+2020=0``=>x=0-2020``=>x=-2020`Vậy `x\in{2019;-2020}` Bình luận
$\text{Đáp án + Giải thích các bước giải:}$
`1//(x-3)(5x+12)=0`
`⇔` \(\left[ \begin{array}{l}x-3=0\\5x+12=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=3\\5x=-12\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=3\\x=-\dfrac{12}{5}\end{array} \right.\)
`\text{Vậy}` `S={3;-(12)/(5)}`
`2//(2x+1)(2-3x)=0`
`⇔` \(\left[ \begin{array}{l}2x+1=0\\2-3x=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}2x=-1\\3x=2\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=-\dfrac{1}{2}\\x=\dfrac{2}{3} \end{array} \right.\)
`\text{Vậy}` `S={-(1)/(2);(2)/(3)}`
`3//2x^{2}+5x=0`
`<=>x(2x+5)=0`
`⇔` \(\left[ \begin{array}{l}x=0\\2x+5=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=0\\x=-\dfrac{5}{2}\end{array} \right.\)
`\text{Vậy}` `S={0;-(5)/(2)}`
`4//(x-2019)(x+2020)=0`
`<=>` \(\left[ \begin{array}{l}x-2019=0\\x+2020=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2019\\x=-2020\end{array} \right.\)
`\text{Vậy}` `S={2019;-2020}`
Giải thích các bước giải:
`1) (x-3)(5x+12)=0`
TH`1`
`x-3=0`
`=>x=0+3`
`=>x=3`
TH`2`
`5x+12=0`
`=>5x=0-12`
`=>5x=-12`
`=>x=-12:5`
`=>x=-12/5`
Vậy `x\in{3;-12/5}`
`2) (2x+1)(2-3x)=0`
TH`1`
`2x+1=0`
`=>2x=0-1`
`=>2x=-1`
`=>x=-1:2`
`=>x=-1/2`
TH`2`
`2-3x=0`
`=>3x=2-0`
`=>3x=2`
`=>x=2:3`
`=>x=2/3`
Vậy `x\in{-1/2;2/3}`
`3) 2x^2+5x=0`
`=>x(2x+5)=0`
TH`1`
`x=0`
TH`2`
`2x+5=0`
`=>2x=0-5`
`=>2x=-5`
`=>x=-5:2`
`=>x=-5/2`
Vậy `x\in{0;-5/2}`
`4) (x-2019)(x+2020)=0`
TH`1`
`x-2019=0`
`=>x=0+2019`
`=>x=2019`
TH`2`
`x+2020=0`
`=>x=0-2020`
`=>x=-2020`
Vậy `x\in{2019;-2020}`