1/ x-(-5)=1 2/ (-10)+x (x-1) 3/ 2+ (x – 2)=(-13) 4/ ( x+3) – 5= (-2) 5/ 8-( 1- x)=5 6/|x|=5 7/|x|-5=7 8/|x+2|=3 9/|x- 5|=10 10/|5- x|=2

1/ x-(-5)=1
2/ (-10)+x (x-1)
3/ 2+ (x – 2)=(-13)
4/ ( x+3) – 5= (-2)
5/ 8-( 1- x)=5
6/|x|=5
7/|x|-5=7
8/|x+2|=3
9/|x- 5|=10
10/|5- x|=2

0 bình luận về “1/ x-(-5)=1 2/ (-10)+x (x-1) 3/ 2+ (x – 2)=(-13) 4/ ( x+3) – 5= (-2) 5/ 8-( 1- x)=5 6/|x|=5 7/|x|-5=7 8/|x+2|=3 9/|x- 5|=10 10/|5- x|=2”

  1. Đáp án:

    Tham khảo 

    Giải thích các bước giải:

     $1)x-(-5)=1$

    $x+5=1$

    $x=1-5=-4$

    $2)(-10)+x(x-1)$

    $=x^2-x-10$

    $3)2+(x-2)=-13$

    $x=-13+2-2$

    $x=-13$

    $4)(x+3)-5=-2$

    $x=-2+5-3$

    $x=0$

    $5)8-(1-x)=5$

    $x=5-8+1$

    $x=-2$

    $6)|x|=5$

    $x=±5$

    $7)|x|-5=7$

    $|x|=12$

    $x=±12$

    $8)|x+2|=3$

    $x+2=±3$

    $x=-5$ hay $x=1$

    $9)|x-5|=10$

    $x-5=±10$

    $x=15$ hay $x=-5$

    $10)|5-x|=2$

    $5-x=±2$

    $x=7$ hay $x=3$

    Bình luận
  2. `1)x-(-5)=1`

    `→x+5=1`

    `→x=1-5`

    `→x=-4`

    Vậy `x=-4`

    `2)(-10)+x (x-1)`

    `=-10+x^2-x`

    `3)2+ (x – 2)=(-13)`

    `→2+x-2=-13`

    `→x=-13`

    Vậy `x=-13`

    `4)( x+3) – 5= (-2)`

    `→x+3=-2+5`

    `→x+3=3`

    `→x=0`

    Vậy `x=0`

    `5)8-( 1- x)=5`

    `→8-1+x=5`

    `→7+x=5`

    `→x=5-7`

    `→x=-2`

    `6)|x|=5`

    `→` \(\left[ \begin{array}{l}x=5\\x=-5\end{array} \right.\) 

    Vậy `x∈{5;-5}`

    `7)|x|-5=7`

    `→|x|=7+5`

    `→|x|=12`

    `→` \(\left[ \begin{array}{l}x=12\\x=-12\end{array} \right.\) 

    Vậy `x∈{12;-12}`

    `8)|x+2|=3`

    `→` \(\left[ \begin{array}{l}x+2=3\\x+2=-3\end{array} \right.\) 

    `→` \(\left[ \begin{array}{l}x=1\\x=-5\end{array} \right.\) 

    Vậy `x∈{1;-5}`

    `9)|x- 5|=10`

    `→` \(\left[ \begin{array}{l}x-5=10\\x-5=-10\end{array} \right.\) 

    `→` \(\left[ \begin{array}{l}x=15\\x=-5\end{array} \right.\) 

    Vậy `x∈{15;-5}`

    `10)|5- x|=2`

    `→` \(\left[ \begin{array}{l}5-x=2\\5-x=-2\end{array} \right.\) 

    `→` \(\left[ \begin{array}{l}x=3\\x=7\end{array} \right.\) 

    Vậy `x∈{3;7}`

    Bình luận

Viết một bình luận